精英家教网 > 高中数学 > 题目详情
17.已知A(1,2,-1)关于面xOy的对称点为B,C(1,-2,-1),则$\overrightarrow{BC}$=(0,-4,-2).

分析 求出对称点的坐标,然后利用向量求解即可.

解答 解:A(1,2,-1)关于面xOy的对称点为B(1,2,1).
C(1,-2,-1),则$\overrightarrow{BC}$=(0,-4,-2).
故答案为:(0,-4,-2).

点评 本题考查空间向量的求法,向量的表示,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.在等比数列{an}中,已知a5=3,则a2a5a8等于(  )
A.6B.9C.27D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设集合M={x|-3≤x<7},N={x|2x+k≤0},M∩N≠∅,则k的取值范围为k≤6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知动圆过定点A(0,2),且在x轴上截得的弦长MN=4
(Ⅰ)求动圆的圆心C的轨迹方程L.
(Ⅱ)若A,B为L上的两动点,线段AB过点F(0,1),且$\overrightarrow{AF}$=λ$\overrightarrow{FB}$(λ>0).过A、B两点分别作曲线L的切线,设其交点为P.设△ABP的面积为S,求S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,内角A、B、C的对边分别为a,b,c,已知a2tanB=b2tanA.
(1)试判断△ABC的形状;
(2)若sin2C=sin2A+sin2B+$\frac{2}{3}$sinAsinB,求cos(2A-$\frac{π}{6}$)的值;
(3)是否存在△ABC,使cos2A+cos2B+cos2C=1,若存在,求出所有满足条件的A值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数y=2cosx(sinx+cosx)的最大值为(  )
A.2B.$\sqrt{2}$-1C.$\sqrt{2}$D.$\sqrt{2}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{x}{1+{x}^{2}}$是定义在(-1,1)上的函数,
(1)试判断f(x)的奇偶性;
(2)用定义证明f(x)在(-1,1)上是增函数;
(3)解不等式f(x-1)+f(x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.函数f(x)是R上的奇函数,且当x>0时,函数的解析式为f(x)=$\frac{2}{x}$-1.
(1)用定义证明f(x)在(0,+∞)上是减函数;
(2)求当x<0时,函数的解析式.
(3)用分段函数形式写出函数f(x)在R上的解析式.当f(a)=3时,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.七位评委为某跳水运动员打出的分数的茎叶图如图,其极差为14.

查看答案和解析>>

同步练习册答案