精英家教网 > 高中数学 > 题目详情

【题目】函数a为常数,且)在处取得极值.

1)求实数a的值,并求的单调区间;

2)关于x的方程上恰有1个实数根,求实数b的取值范围;

3)求证:当时,

【答案】1的单调递增区间是,函数的单调递减区间是.(2.(3)见解析

【解析】

1)首先写出函数的定义域,之后求函数的导函数,利用条件,得到等式,解出,代入导函数解析式,令,求得函数的单调增、减区间;

2)将的解析式代入方程,化简得,令,利用导数研究其单调性,结合题意,得到不等式组,求得结果;

3)结合(1),得到,进一步得到成立,对依次取值,累加得到结果.

1,由题意得,

时,

,得

,得

∴函数的单调递增区间是

函数的单调递减区间是

2)关于x的方程

化简为

,解得1

,得

函数上单调递增,

关于x的方程上恰有1个实数根,

则只需

3)由(1)知,当时,,即

时,令,则成立,

成立

n依次取12345…………

可得

……

累加求和得:

即当时,成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,曲线在点处的切线方程为

ab的值;

2若当时,关于x的不等式恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在R上的函数的导函数,且,则 的大小关系为( )

A. a<b<c B. b<a<c C. c<a<b D. c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有,…,这5个球队进行单循环比赛(全部比赛过程中任何一队都要分别与其他各队比赛一场且只比赛一场).当比赛进行到一定阶段时,统计这4个球队已经赛过的场数分别为:队4场,队3场, 队2场,队1场,则队比赛过的场数为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十三五规划确定了到2020年消除贫困的宏伟目标,打响了精准扶贫的攻坚战,为完成脱贫任务,某单位在甲地成立了一家医疗器械公司吸纳附近贫困村民就工,已知该公司生产某种型号医疗器械的月固定成本为20万元,每生产1千件需另投入5.4万元,设该公司一月内生产该型号医疗器械x千件且能全部销售完,每千件的销售收入为万元,已知

1)请写出月利润y(万元)关于月产量x(千件)的函数解析式;

2)月产量为多少千件时,该公司在这一型号医疗器械的生产中所获月利润最大?并求出最大月利润(精确到0.1万元).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】自古以来“民以食为天”,餐饮业作为我国第三产业中的一个支柱产业,一直在社会发展与人民生活中发挥着重要作用.某机构统计了2010~2016年餐饮收入的情况,得到下面的条形图,则下面结论中不正确的是( )

A. 2010~2016年全国餐饮收入逐年增加

B. 2016年全国餐饮收入比2010年翻了一番以上

C. 2010~2016年全国餐饮收入同比增量最多的是2015年

D. 2010~2016年全国餐饮收入同比增量超过3000亿元的年份有3个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,上顶点为,直线的斜率为,且原点到直线的距离为.

(1)求椭圆的标准方程;

(2)若不经过点的直线与椭圆交于两点,且与圆相切.试探究的周长是否为定值,若是,求出定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定点,定直线 ,动圆过点,且与直线相切.

(Ⅰ)求动圆的圆心轨迹的方程;

(Ⅱ)过点的直线与曲线相交于 两点,分别过点 作曲线的切线 ,两条切线相交于点,求外接圆面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点恰好是双曲线的一个焦点,且两条曲线交点的连线过点,则该双曲线的离心率为( )

A.B.C.D.

查看答案和解析>>

同步练习册答案