精英家教网 > 高中数学 > 题目详情

【题目】为了弘扬传统文化,某市举办了“高中生诗词大赛”,现从全市参加比赛的学生中随机抽取人的成绩进行统计,得到如图所示的频率分布直方图,其中成绩的分组区间为.

1)求频率分布直方图中的值;

2)在所抽取的名学生中,用分层抽样的方法在成绩为的学生中抽取了一个容量为的样本,再从该样本中任意抽取人,求人的成绩均在区间内的概率;

3)若该市有名高中生参赛,根据此次统计结果,试估算成绩在区间内的人数.

【答案】(1)0.015;(2);(31000.

【解析】

1)由各组频率之和,即频率分布直方图中各组矩形的面积和为1,可得的值;

2)根据分层抽样的原则,可得成绩在分别是3人和2人,之和写出抽取两人对应的所有的基本事件总数,找出满足条件的基本事件数,代入古典概型概率计算公式,可得答案;

3)根据成绩落在内的频率,可估算出成绩在区间的人数.

1)依题意可知组距为

解得 .

2)抽取了一个容量为的样本成绩在区间的人数为:

人,记3人为.

成绩在区间的人数为:人,记2人为

任取2人的基本事件为:

,共计10.

其中在区间的基本事件为: ,共计1

所以人的成绩均在区间的概率为: .

3)由人,

即估计成绩在区间的人数为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求直线的普通方程和曲线的直角坐标方程;

(2)设点,直线与曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的上顶点为,右焦点为,直线与圆相切.

(1)求椭圆的方程;

(2)若不过点的动直线与椭圆交于两点,且,试探究:直线是否过定点,若是,求该定点的坐标,若不是,请说明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体中,的中点

(1)在所给图中画出平面与平面的交线(不必说明理由)

(2)证明:平面

(3)求平面与平面所成锐二面角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数是定义在上的奇函数,且当时,.

(Ⅰ)若,求函数的解析式;

(Ⅱ)若,方程至少有两个不等的解,求的取值集合;

(Ⅲ)若函数上的单调减函数,

①求的取值范围;

②若不等式成立,求实数的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角三棱柱分别为的中点.

(1)求证:平面

(2)求证:平面平面

(3)若直线和平面所成角的正弦值等于求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数则不等式的解集为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记曲线fx)=xex上任意一点处的切线为直线lykx+b,则k+b的值不可能为(  )

A. B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)已知,用分析法证明:

(2)已知 ,用反证法证明: 都大于零.

查看答案和解析>>

同步练习册答案