精英家教网 > 高中数学 > 题目详情

【题目】在锐角ABC中,角A、B、C所对的边分别为a,b,c,b=4,c=6,且asinB=2
(1)求角A的大小;
(2)若D为BC的中点,求线段AD的长.

【答案】解:(1)根据正弦定理得,
所以,asinB=bsinA=2
因为,b=4,所以,sinA=
且三角形为锐角三角形,
所以,A=
(2)由(1)得,cosA=
根据余弦定理,a2=b2+c2﹣2bccosA,
所以,a2=42+62﹣2×4×6×=28,
解得a=2
因为D为BC的中点,则AD为BC边的中线,
因此,根据三角形中线长公式:
|AD|=ma==
即线段AD的长度为

【解析】(1)根据正弦定理得出asinB=bsinA,从而求出sinA;
(2)先根据余弦定理求出边长a,再用中线长公式得出AD的长.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数,函数

(1)当时,解关于的不等式:

(2)若,已知函数有两个零点,若点,其中是坐标原点,证明: 不可能垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的单调区间;

(2)若存在,且,使得,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四组函数,表示同一函数的是(
A.f(x)= ,g(x)=x
B.f(x)=x,g(x)=
C.f(x)=lnx2 , g(x)=2lnx
D.f(x)=logaax(a>0,a≠1),g(x)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把正方形AA1B1B以边AA1所在直线为轴旋转900到正方形AA1C1C,其中D,E,F分别为B1A,C1C,BC的中点.
(1)求证:DE∥平面ABC;
(2)求证:B1F⊥平面AEF;
(3)求二面角A﹣EB1﹣F的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆M与圆C1:(x+4)2+y2=2外切,与圆C2:(x﹣4)2+y2=2内切,求动圆圆心M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了制作广告牌,需在如图所示的铁片上切割出一个直角梯形,已知铁片由两部分组成,半径为1的半圆及等腰直角三角形,其中,为裁剪出面积尽可能大的梯形铁片(不计损耗),将点放在弧上,点放在斜边上,且,设.

(1)求梯形铁片的面积关于的函数关系式;

2)试确定的值,使得梯形铁片的面积最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四组函数,表示同一函数的是(
A.f(x)= ,g(x)=x
B.f(x)=x,g(x)=
C.f(x)=lnx2 , g(x)=2lnx
D.f(x)=logaax(a>0,a≠1),g(x)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出的以下四个问题中,不需要用条件语句来描述其算法是(
A.输入一个实数x,求它的绝对值
B.求面积为6的正方形的周长
C.求三个数a、b、c中的最大数
D.求函数f(x)= 的值

查看答案和解析>>

同步练习册答案