精英家教网 > 高中数学 > 题目详情

【题目】已知函数,时取得极值.

(1)求f(x)的单调区间;

(2)求证:当时,.

【答案】(1)增区间为,减区间为;(2)详见解析.

【解析】

(1)时取得极值,则,从而可得a值和函数解析式,求导,解不等式,即可确定f(x)的单调区间;(2)构造函数g(x)=对函数求导,判断函数单调性,通过单调性易得g(x)>0恒成立,进而得到结论.

(1)f′(x)=x-,因为x=2是一个极值点,所以2-=0.所以a=4.

此时f′(x)=. 因为f(x)的定义域是{x|x>0},

所以当0<x<2时,f′(x)<0;当x>2时,f′(x)>0.所以当a=4时,x=2是f(x)的极小值点.即增区间为,减区间为.

(2)证明:设g(x)=x3x2-lnx,则g′(x)=2x2-x-

因为当x>1时,g′(x)=>0,所以g(x)在(1,+∞)上是增函数.

所以g(x)>g(1)=>0.所以当x>1时, x2+lnx<x3.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,底面ABCD是边长为2的菱形,∠ABC=60°,PA⊥PB,PC=2.
(1)求证:平面PAB⊥平面ABCD;
(2)若PA=PB,求二面角A﹣PC﹣D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个化肥厂生产甲种混合肥料1车皮、乙种混合肥料1车皮所需要的主要原料如表:

原料
种类

磷酸盐(单位:吨)

硝酸盐(单位:吨)

4

20

2

20

现库存磷酸盐8吨、硝酸盐60吨,计划在此基础上生产若干车皮的甲、乙两种混合肥料.
(1)设x,y分别表示计划生产甲、乙两种肥料的车皮数,试列出x,y满足的数学关系式,并画出相应的平面区域;
(2)若生产1车皮甲种肥料,利润为3万元;生产1车皮乙种肥料,利润为2万元.那么分别生产甲、乙两种肥料多少车皮,能够产生最大利润?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=1,an+1=3an+1.
(1)证明{an+ }是等比数列,并求{an}的通项公式;
(2)证明: + +…+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设向量 =(cosθ,sinθ), =(﹣ );
(1)若 ,且θ∈(0,π),求θ;
(2)若|3 + |=| ﹣3 |,求| + |的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(x+ ),x∈R,且f( )=
(1)求A的值;
(2)若f(θ)+f(﹣θ)= ,θ∈(0, ),求f( ﹣θ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3﹣tx2+3x,若对于任意的a∈[1,2],b∈(2,3],函数f(x)在区间(a,b)上单调递减,则实数t的取值范围是(  )
A.(﹣∞,3]
B.(﹣∞,5]
C.[3,+∞)
D.[5,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知点P是平行四边形ABCD所在平面外一点,M、N分别是AB、PC的中点.

(1)求证:MN∥平面PAD;

(2)在PB上确定一个点Q,使平面MNQ∥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an},a2=8,前9项和为153.
(1)求a5an
(2)若 ,证明数列{bn}为等比数列;

查看答案和解析>>

同步练习册答案