精英家教网 > 高中数学 > 题目详情

【题目】已知函数时取得极值.

(1)的值;

(2)求函数上的最大值.

【答案】(1);(2)3.

【解析】

(1)求出函数的导数,得到﹣3,1是方程f′(x)=0的根,解方程组即可;

(2)求出函数的导数,解关于导函数的不等式,求出函数的单调性即可.

(1)f′(x)=3x2+2ax+b

x=﹣3,x=1时取得极值,

故﹣3,1是方程f′(x)=0的解,

解得:a=3,b=-9;经检验,满足在时取得极值,a=3,b=-9;

(2)由(1)得:fx)=f′(x)=3x2+6x-9=3(x+3)(x﹣1),

f′(x)>0,解得:x>1或x<﹣3,令f′(x)<0,解得:﹣3<x<1,

fx)在(﹣∞,﹣3)递增,在(﹣3,1)递减,在(1,+∞)递增.又x

fx)在递减,在递增, f(0)=1,f(2)=3,∴函数上的最大值为3.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数,曲线在点处的切线方程为.

1)求的解析式;

(2)证明:曲线上任一点处的切线与直线和直线所围成的三角形面积为定值,并求此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正三棱柱中, 分别为的中点,设.

(1)求证:平面平面

(2)若二面角的平面角为,求实数的值,并判断此时二面角是否为直二面角,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本题共3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9.

已知数列满足.

1)若,求的取值范围;

2)若是公比为等比数列,的取值范围;

3)若成等差数列,且,求正整数的最大值,以及取最大值时相应数列的公差.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

)求函数的单调区间;

)若对定义域每的任意恒成立,求实数的取值范围;

)证明:对于任意正整数,不等式恒成立。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知奇函数(实数为常数),且满足

(1)求函数的解析式;

(2)试判断函数在区间上的单调性,并用函数单调性定义证明;

(3)当时,函数恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 为向国际化大都市目标迈进,沈阳市今年新建三大类重点工程,它们分别是30项基础设施类工程,20项民生类工程和10项产业建设类工程.现有来沈阳的3名工人相互独立地从这60个项目中任选一个项目参与建设.

)求这3人选择的项目所属类别互异的概率;

)将此3人中选择的项目属于基础设施类工程或产业建设类工程的人数记为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,令.

(1)当时,求函数的单调递增区间;

(2)若关于的不等式恒成立,求整数的最小值;

(3)若,正实数满足,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥中, ,底面为梯形, 平面.

(1)证明:平面平面

(2)当异面直线所成角为时,求四棱锥的体积.

查看答案和解析>>

同步练习册答案