【题目】某大学毕业生参加一个公司的招聘考试,考试分笔试和面试两个环节,笔试有、两个题目,该学生答对、两题的概率分别为、,两题全部答对方可进入面试.面试要回答甲、乙两个问题,该学生答对这两个问题的概率均为,至少答对一个问题即可被聘用,若只答对一问聘为职员,答对两问聘为助理(假设每个环节的每个题目或问题回答正确与否是相互独立的).
(1)求该学生被公司聘用的概率;
(2)设该学生应聘结束后答对的题目或问题的总个数为,求的分布列和数学期望.
科目:高中数学 来源: 题型:
【题目】已知函数,当时,取得极小值.
(1)求的值;
(2)记,设是方程的实数根,若对于定义域中任意的,.当且时,问是否存在一个最小的正整数,使得恒成立,若存在请求出的值;若不存在请说明理由.
(3)设直线,曲线.若直线与曲线同时满足下列条件:
①直线与曲线相切且至少有两个切点;
②对任意都有.则称直线与曲线的“上夹线”.
试证明:直线是曲线的“上夹线”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某消费品企业销售部对去年各销售地的居民年收入(即此地所有居民在一年内的收入的总和)及其产品销售额进行抽样分析,收集数据整理如下:
销售地 | A | B | C | D |
年收入x(亿元) | 15 | 20 | 35 | 50 |
销售额y(万元) | 16 | 20 | 40 | 48 |
(1)在图a中作出这些数据的散点图,并指出y与x成正相关还是负相关?
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程?
(3)若B地今年的居民年收入将增长20%,预测B地今年的销售额将达到多少万元?
回归方程系数公式:,.
参考数据:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校夏令营有3名男同学和3名女同学,其年级情况如下表:
一年级 | 二年级 | 三年级 | |
男同学 | A | B | C |
女同学 | X | Y | Z |
现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同)
用表中字母列举出所有可能的结果
设为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校夏令营有3名男同学和3名女同学,其年级情况如下表:
一年级 | 二年级 | 三年级 | |
男同学 | A | B | C |
女同学 | X | Y | Z |
现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同)
用表中字母列举出所有可能的结果
设为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】上饶市在某次高三适应性考试中对数学成绩数据统计显示,全市10000名学生的成绩近似服从正态分布,现某校随机抽取了50名学生的数学成绩分析,结果这50名学生的成绩全部介于85分到145分之间,现将结果按如下方式分为6组,第一组,第二组,…,第六组,得到如图所示的频率分布直方图:
(1)试由样本频率分布直方图估计该校数学成绩的平均分数;
(2)若从这50名学生中成绩在125分(含125分)以上的同学中任意抽取3人,该3人在全市前13名的人数记为,求的概率.
附:若,则,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,椭圆C:(a>b>0)的离心率为,短轴长是2.
(1)求椭圆C的方程;
(2)设椭圆C的下顶点为D,过点D作两条互相垂直的直线l1,l2,这两条直线与椭圆C的另一个交点分别为M,N.设l1的斜率为k(k≠0),△DMN的面积为S,当,求k的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com