精英家教网 > 高中数学 > 题目详情
15.截至11月27日,国内某球员在2015-2016赛季CBA联赛的前10轮比赛中,各场得分xi(i=1,2,3,…,10)的茎叶图如图①所示,图②是该运动员某项成绩指标分析的程序框图,则输出的结果是(  )
A.8B.7C.6D.5

分析 模拟执行程序框图,得到程序的功能,由茎叶图写出所有的数据,计算得分超过20分(不包括20分)的场数即可得解.

解答 解:模拟执行程序框图,可得其功能是计算得分超过20分(不包括20分)的场数,
有茎叶图知,各场得分的数据为:
14,17,27,21,28,20,26,26,31,44,
∴根据茎叶图可知得分超过20分(不包括20分)的场数有7场.
故选:B.

点评 解决茎叶图问题,关键是能由茎叶图得到各个数据,再利用公式求出所求的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.如图.在平行六面体ABCD-A1B1C1D1中.
(1)如图1,已知$\overrightarrow{DA}$=$\overrightarrow{a}$,$\overrightarrow{DC}$=$\overrightarrow{b}$,$\overrightarrow{D{D}_{1}}$=$\overrightarrow{c}$,点G是侧面B1BCC1的中心,试用向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$表示下列向量:$\overrightarrow{D{B}_{1}}$,$\overrightarrow{B{A}_{1}}$,$\overrightarrow{C{A}_{1}}$,$\overrightarrow{DG}$.
(2)如图2,点E,F,G分别是$\overrightarrow{{A}_{1}{D}_{1}}$,$\overrightarrow{{D}_{1}D}$,$\overrightarrow{{D}_{1}{C}_{1}}$的中点,请选择恰当的基底向量.证明:①EG∥AC;②平面EFG∥平面AB1C.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合A={(x,y)|$\sqrt{\frac{{x}^{2}}{9}}+\sqrt{\frac{{y}^{2}}{4}}≤1$},B={(x,y)|x-2y≤0},区域M=A∩B,则区域M的面积为(  )
A.6B.8C.12D.24

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设命题α:x>0,命题β:x>m,若α是β的充分条件,则实数m的取值范围是(-∞,0].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.解不等式组:$\left\{\begin{array}{l}{\frac{2}{x-2}<-1}\\{1<|x|<3}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知△ABC的边BC上一动点D满足$\overrightarrow{CD}$=n$\overrightarrow{DB}$(n∈N*),$\overrightarrow{AD}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,则数列{(n+1)x}的前n项和为(  )
A.$\frac{1}{n+1}$B.$\frac{n}{n+1}$C.$\frac{1}{2}n(n+1)$D.$\frac{1}{2}(n+1)(n+2)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知在各项均为正数的等比数列{an}中,a1=2,且2a1,a3,3a2成等差数列.
(Ⅰ)求等比数列{an}的通项公式;
(Ⅱ)若cn=an•($\frac{2}{n+1}-λ$),n=1,2,3,…,且数列{cn}为单调递减数列,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设数列{an},{bn},{an+bn}都是等比数列,且满足a1=b1=1,a2=2,则数列{an+bn}的前n项和Sn=2n+1-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知关于x的不等式kx2-(1+k)x+1<0(其中k∈R).
(1)若k=-3,解上述不等式;
(2)若k>0,求解上述不等式.

查看答案和解析>>

同步练习册答案