精英家教网 > 高中数学 > 题目详情

【题目】已知圆C:和点,P是圆上一点,线段BP的垂直平分线交CPM点,则M点的轨迹方程为______;若直线lM点的轨迹相交,且相交弦的中点为,则直线l的方程是______

【答案】

【解析】

根据线段中垂线的性质可得,,又半径,故有,根据椭圆的定义判断轨迹椭圆,求出值,即得椭圆的标准方程设出直线与椭圆的两个交点A,B的坐标及AB的中点的坐标,利用点差法结合直线斜率,然后得到直线方程.

由圆的方程可知,圆心,半径等于,设点M的坐标为

的垂直平分线交CQ于点M,

半径依据椭圆的定义可得,点M的轨迹是以B、C为焦点的椭圆,且

故椭圆方程为

设直线l交椭圆与两点,AB的中点为

作差得:

直线l的方程是:,即:

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某河流在一段时间x min内流过的水量为y m3yx的函数,yf(x)=.

(1)x1变到8时,y关于x的平均变化率是多少?它代表什么实际意义?

(2)f′(27)并解释它的实际意义.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: (a>b>0)的一个焦点与抛物线 的焦点相同,F1 , F2为椭圆的左、右焦点.M为椭圆上任意一点,△MF1F2面积的最大值为4

(1)求椭圆C的方程;
(2)设椭圆C上的任意一点N(x0 , y0),从原点O向圆N:(x﹣x02+(y﹣y02=3作两条切线,分别交椭圆于A,B两点.试探究|OA|2+|OB|2是否为定值,若是,求出其值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且(c﹣2a) =c
(1)求B的大小;
(2)已知f(x)=cosx(asinx﹣2cosx)+1,若对任意的x∈R,都有f(x)≤f(B),求函数f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是边长为的正方形,侧棱底面,且侧棱的长是,点分别是的中点.

(Ⅰ)证明: 平面

(Ⅱ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=2x﹣cosx,{an}是公差为 的等差数列,f(a1)+f(a2)+…+f(a5)=5π,则[f(a3)]2﹣a1a5=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知点A(0,0),B(4,3),若A,B,C三点按顺时针方向排列构成等边三角形ABC,且直线BC与x轴交于点D.
(1)求cos∠CAD的值;
(2)求点C的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的各项均为正整数,其前n项和为Sn , an+1= ,若S3=10,则S180=(
A.600或900
B.900或560
C.900
D.600

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)设关于的一元二次方程是从这四个数中任取的一个数,是从这三个数中任取的一个数,求上述方程有实数根的概率.

(2)王小一和王小二约定周天下午在银川大阅城四楼运动街区见面,约定5:00—6:00见面,先到的等另一人半小时,没来就可以先走了,假设他们在自己估计时间内到达的可能性相等,求他们两个能相遇的概率有多大?

查看答案和解析>>

同步练习册答案