精英家教网 > 高中数学 > 题目详情
精英家教网如,平面ABEF⊥平面ABCD,四边形ABEF与ABCD都是直角梯形,∠BAD=∠FAB=90°,BC
.
1
2
AD
,BE
.
1
2
AF

(Ⅰ)证明:C,D,F,E四点共面;
(Ⅱ)设AB=BC=BE,求二面角A-ED-B的大小.
分析:(Ⅰ)延长DC交AB的延长线于点G,延长FE交AB的延长线于G′,根据比例关系可证得G与G′重合,准确推理,得到直线CD、EF相交于点G,即C,D,F,E四点共面.
(Ⅱ)取AE中点M,作MN⊥DE,垂足为N,连接BN,由三垂线定理知BN⊥ED,根据二面角平面角的定义可知∠BMN为二面角A-ED-B的平面角,在三角形BMN中求出此角即可.
解答:解:(Ⅰ)延长DC交AB的延长线于点G,由BC
.
1
2
AD
GB
GA
=
GC
GD
=
BC
AD
=
1
2

延长FE交AB的延长线于G′精英家教网
同理可得
GE
GF
=
GB
GA
=
BE
AF
=
1
2

GB
GA
=
GB
GA
,即G与G′重合
因此直线CD、EF相交于点G,即C,D,F,E四点共面.
(Ⅱ)设AB=1,则BC=BE=1,AD=2
取AE中点M,则BM⊥AE,又由已知得,AD⊥平面ABEF
故AD⊥BM,BM与平面ADE内两相交直线AD、AE都垂直.
所以BM⊥平面ADE,作MN⊥DE,垂足为N,连接BN
由三垂线定理知BN⊥ED,∠BMN为二面角A-ED-B的平面角.BM=
2
2
,MN=
1
2
AD×AE
DE
=
3
3

tan∠BMN=
BM
MN
=
6
2

所以二面角A-ED-B的大小arctan
6
2
点评:此题重点考查立体几何中四点共面问题和求二面角的问题,考查空间想象能力,几何逻辑推理能力,以及计算能力;突破:熟悉几何公理化体系,准确推理,注意书写格式是顺利进行求解的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,平面ABEF⊥平面ABCD,四边形ABEF与ABCD都是直角梯形,∠BAD=∠FAB=90°,BC
 
=
1
2
AD,BE
.
1
2
AF.
(1)求证:C、D、F、E四点共面;
(2)设AB=BE,求证:平面ADE⊥平面DCE;
(3)设AB=BC=BE,求二面角A-ED-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD为直角梯形,AD∥BC,AD⊥CD.AD=AB=2BC,四边形ABEF为矩形,平面ABEF⊥平面ABCD.
(Ⅰ)C、D、E、F四点共面吗?证明你的结论;
(Ⅱ)设AF=kAB(0<k<1),二面角A-FD-B的余弦值为
13
,求实数k的值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省高三下学期第二次联考文数学试卷(解析版) 题型:解答题

如图,四边形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=3,点E、F分别在BC、AD上,EF∥AB.现将四边形ABEF沿EF折起,使平面ABEF平面EFDC,设AD中点为P.

(Ⅰ)当E为BC中点时,求证:CP∥平面ABEF;

(Ⅱ)设BE=x,当x为何值时,三棱锥A-CDF的体积有最大值?并求出这个最大值.

 

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省温州中学高三(上)期中数学试卷(理科)(解析版) 题型:解答题

如图,四边形ABCD为直角梯形,AD∥BC,AD⊥CD.AD=AB=2BC,四边形ABEF为矩形,平面ABEF⊥平面ABCD.
(Ⅰ)C、D、E、F四点共面吗?证明你的结论;
(Ⅱ)设AF=kAB(0<k<1),二面角A-FD-B的余弦值为,求实数k的值.

查看答案和解析>>

同步练习册答案