精英家教网 > 高中数学 > 题目详情

【题目】已知圆关于直线对称,圆心在第二象限,半径为

(Ⅰ)求圆的方程.

(Ⅱ)是否存在直线与圆相切,且在轴、轴上的截距相等?若存在,写出满足条件的直线条数(不要求过程);若不存在,说明理由.

【答案】(1) ;(2) 3条.

【解析】试题分析:(1)根据圆心和半径写出圆C的标准方程;(2) 轴、轴上的截距相等且不为时,设存在直线与圆相切; 轴、轴上的截距相等且不为时,设存在直线与圆相切,,圆心到直线的距离为半径,求出参数的值,带回直线方程即可.

试题解析:

(Ⅰ)由题意知:圆心,半径,圆

(Ⅱ)在轴、轴上的截距相等且不为时,设存在直线与圆相切,

则圆心到直线的距离为半径

所以

直线方程为

轴、轴上的截距相等且不为时,设存在直线与圆相切,

则有

所以,

即:,综上知,存在直线与圆相切,且在轴、轴上的截距相等,

直线方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆是大于的常数)的左、右顶点分别为,点是椭圆上位于轴上方的动点,直线与直线分别交于两点(设直线的斜率为正数).

Ⅰ)设直线的斜率分别为 ,求证为定值.

Ⅱ)求线段的长度的最小值.

Ⅲ)判断存在点,使得是等边三角形的什么条件?(直接写出结果)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 ,过点作圆的切线,切点分别为 ,直线恰好经过椭圆的右顶点和上顶点.

(Ⅰ)求椭圆的方程;

(Ⅱ)如图,过椭圆的右焦点作两条互相垂直的弦 ,设 的中点分别为 ,证明:直线必过定点,并求此定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=,若数列{an}(n∈N*)满足:a1=1,an+1f(an).

(1)证明数列{}为等差数列,并求数列{an}的通项公式.

(2)设数列{cn}满足:cn,求数列{cn}的前n项的和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的不等式ax2+5x+c>0的解集为{x| <x< },
(1)求a,c的值;
(2)解关于x的不等式ax2+(ac+b)x+bc≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数,如果存在函数为常数),使得对一切实数都成立,则称为函数的一个承托函数,给出如下命题:

①函数是函数的一个承托函数;

②函数是函数的一个承托函数;

③若函数是函数的一个承托函数,则的取值范围是

④值域是的函数不存在承托函数.

其中正确的命题的个数为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知侧棱垂直于底面的四棱柱中,

(1)若是线段上的点且满足,求证:平面平面

(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:以点 为圆心的圆与轴交于点,与轴交于点,其中为原点.

)求证: 的面积为定值.

)设直线与圆交于点,若,求:圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,设函数.

(1)当时,求的极值点;

(2)讨论在区间上的单调性;

(3)对任意恒成立时, 的最大值为1,求的取值范围.

查看答案和解析>>

同步练习册答案