精英家教网 > 高中数学 > 题目详情
设函数f(x)=,若f(x0)>1,则x0的取值范围是
A.(-1,1)B.(-1,+
C.(-,-1)∪(0,+D.(-,-1)∪(1,+
D
此题答案应选D
分析:将变量x0按分段函数的范围分成两种情形,在此条件下分别进行求解,最后将满足的条件进行合并.
解答:解:当x0≤0时,2-x0-1>1,则x0<-1,
当x0>0时,x0>1则x0>1,
故x0的取值范围是(-∞,-1)∪(1,+∞),
故选D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

 则的值为                   (  )
                                  

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知定义域为R的函数f(x)满足f(f(x)-x2+x)=f(x)-x2+x.
(Ⅰ)若f(2)=3,求f(1);又若f(0)=a,求f(a);
(Ⅱ)设有且仅有一个实数x0,使得f(x)= x0,求函数f(x)的解析表达式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的定义域是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知奇函数的反函数的图象过点
(1)求实数的值;
(2)解关于x的不等式

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
在矩形ABCD中,已知,在AB、AD、CD、CB上分别
截取AE、AH、CG、CF都等于
(1)将四边形EFGH的面积S表示成的函数,并写出函数的定义域
(2)当为何值时,四边形EFGH的面积最大?并求出最大面积

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题14分)已知函数的图像与函数的图像关于点
对称
(1)求函数的解析式;
(2)若在区间上的值不小于6,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数 fx)=(K-2)x2+(K-1)x+3是偶函数,则fx)的递减区间是      

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知定义在R上的函数是周期函数,且满足,函数的最小正周期为______________。

查看答案和解析>>

同步练习册答案