【题目】如果函数f(x)=x3-x满足:对于任意的x1,x2∈[0,2],都有|f(x1)-f(x2)|≤a2恒成立,则a的取值范围是( )
A. [-, ]
B. [-, ]
C. (-∞,- ]∪[,+∞)
D. (-∞,- ]∪[,+∞)
科目:高中数学 来源: 题型:
【题目】设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M(MD),有x+l∈D,且f(x+l)f(x),则称f(x)为M上的l高调函数.现给出下列命题:①函数f(x)=2﹣x为R上的1高调函数;②函数f(x)=sin2x为R上的π高调函数;③如果定义域为[﹣1,+∞)的函数f(x)=x2为[﹣1,+∞)上m高调函数,那么实数m的取值范围是[2,+∞);④函数f(x)=lg(|x﹣2|+1)为[1,+∞)上的2高调函数.其中真命题的个数为( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数,若不等式的解集为(1,4),且方程f(x)=x有两个相等的实数根。
(1)求f(x)的解析式;
(2)若不等式f(x)>mx在上恒成立,求实数m的取值范围;
(3)解不等式
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题10分) 从3名男生和名女生中任选2人参加比赛。
①求所选2人都是男生的概率;
②求所选2人恰有1名女生的概率;
③求所选2人中至少有1名女生的概率
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为更好地落实农民工工资保证金制度,南方某市劳动保障部门调查了年下半年该市名农民工(其中技术工、非技术工各名)的月工资,得到这名农民工月工资的中位数为百元(假设这名农民工的月工资均在(百元)内)且月工资收入在(百元)内的人数为,并根据调查结果画出如图所示的频率分布直方图:
(Ⅰ)求,的值;
(Ⅱ)已知这名农民工中月工资高于平均数的技术工有名,非技术工有名,则能否在犯错误的概率不超过的前提下认为是不是技术工与月工资是否高于平均数有关系?
参考公式及数据:,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=AA1,且E,F分别是BC,B1C1中点.
(1)求证:A1B∥平面AEC1;
(2)求直线AF与平面AEC1所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】1927年德国汉堡大学的学生考拉兹提出一个猜想:对于每一个正整数,如果它是奇数,就把它乘以3再加1,如果它是偶数,就把它除以2,这样循环,最终结果都能得到1.如图是为了验证考拉兹猜想而设计的一个程序框图,则①处应填写的条件及输出的结果i分别为( )
A.a是偶数?;5B.a是偶数?;6
C.a是奇数?;5D.a是奇数?;6
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com