A. | $\frac{π}{4}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
分析 考查图形,作出平面图形,然后找出二面角的平面角,通过三角形的解法求解二面角的平面角.
解答 解:△ABC中,∠C=$\frac{π}{2}$,∠B=$\frac{π}{6}$,AC=2,M是AB的中点,三角形ACM是正三角形,取CM的中点为:O.连结AO并延长角CB于D,
可知AO⊥CM,OD⊥CM,
则AC=AM=CM=MB=2,CO=OM=1,CB=$2\sqrt{3}$.
AO=$\sqrt{3}$,CD=$\frac{\sqrt{3}}{2}$,OD=$\frac{1}{2}$,
沿直线CM将CBM折起,若AB=$\sqrt{10}$,在折叠后的图形中,cos∠ACB=$\frac{{AC}^{2}+{CB}^{2}-{AB}^{2}}{2AC•CB}$=$\frac{4+12-10}{2×2×2\sqrt{3}}$=$\frac{\sqrt{3}}{4}$.
AD=$\sqrt{{AC}^{2}+{CD}^{2}-2AC•CDcos∠ACB}$=$\sqrt{4+\frac{3}{4}-\frac{3}{2}}$=$\frac{\sqrt{13}}{2}$.
AD2=AO2+OD2,
∵AO⊥CM,OD⊥CM,
∴∠AOD就是二面角B-CM-A的平面角,可知α=90°.
故选:D.
点评 本题考查二面角的平面角的求法,考查空间想象能力以及转化思想的应用,考查计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-1,3) | B. | (-1,0) | C. | (0,2) | D. | (2,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 若l∥α,l∥β,则α∥β | B. | 若α⊥β,l⊥α,则l⊥β | C. | 若l∥α,l⊥β,则α⊥β | D. | 若α⊥β,l∥α,则α⊥β |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com