精英家教网 > 高中数学 > 题目详情
1.曲线y=$\frac{1}{3}$x3+x在点(-1,-$\frac{4}{3}$)处的切线与坐标轴围成的三角形面积为(  )
A.$\frac{1}{9}$B.$\frac{2}{9}$C.$\frac{1}{3}$D.$\frac{2}{3}$

分析 求得函数的导数,可得切线的斜率,由点斜式方程可得切线的方程,分别令x=0,y=0,求得与坐标轴的交点,由三角形的面积公式计算即可得到所求值.

解答 解:y=x+$\frac{1}{3}$x3的导数为y′=1+x2
可得曲线在点(-1,-$\frac{4}{3}$)处的切线斜率为k=2,
即有在点(-1,-$\frac{4}{3}$)处的切线方程为y+$\frac{4}{3}$=2(x+1),
令x=0,可得y=$\frac{2}{3}$;y=0,可得x=-$\frac{1}{3}$.
则切线和坐标轴围成的三角形的面积为$\frac{1}{2}$×$\frac{2}{3}$×$\frac{1}{3}$=$\frac{1}{9}$.
故选:A.

点评 本题考查导数的运用:求切线的方程,考查导数的几何意义,正确求导和运用直线方程是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.函数f(x)=lnx-ax+1(a为实常数)在x=1处的切线与直线y=2016平行.
(1)求a的值;   
(2)求f(x)的单调区间;
(3)证明当x∈(1,+∞)时,1<$\frac{x-1}{lnx}$<x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知幂函数f(x)的图象过点(2,$\frac{1}{4}$),则f(x)的单调减区间为(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax2+xlnx-1,a∈R,其中e是自然对数的底数.
(1)当a=0时,求函数f(x)的极值;
(2)若f(x)在区间[1,5]上为单调函数,求a的取值范围;
(3)当a=-e时,试判断方程|f(x)+1|=lnx+$\frac{3}{2}$x是否有实数解,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知双曲线方程$\frac{x^2}{4}$-$\frac{y^2}{3}$=1.则该双曲线的左焦点坐标是(-2$\sqrt{7}$,0),离心率为$\frac{\sqrt{7}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.某班要从5名男生与3名女生中选出4人参加学校组织的书法比赛,要求男生、女生都必须至少有一人参加,则共有不同的选择方案种数为65.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.cos$\frac{5π}{3}$的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ln(x+a)-x2-x在x=0处取得极值.
(1)求实数a的值;
(2)若关于x的方程,f(x)=-$\frac{5}{2}$x+b在区间[0,2]上恰有两个不同的实数根,求实数b的取值范围;
(3)证明:对任意的正整数n,不等式ln$\frac{n+2}{2}$<$\frac{1}{1}$+$\frac{1}{2}$+…+$\frac{1}{n}$都成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某中学一名数学老师对全班50名学生某次考试成绩分男女生进行统计(满分150分),其中120分(含120分)以上为优秀,绘制了如图所示的两个频率分布直方图:
(1)根据以上两个直方图完成下面的2×2列联表:
成绩性别优秀不优秀总计
男生131023
女生72027
总计203050
(2)根据(1)中表格的数据计算,你有多大把握认为学生的数学成绩与性别之间有关系?
k02.0722.7063.8415.0246.6357.87910.828
P(K2≥k00.150.100.050.0250.0100.0050.001
附:K2=$\frac{n(ab-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

同步练习册答案