精英家教网 > 高中数学 > 题目详情
15.函数f(x)的图象是由两条线段组成的折线段(如图所示),则函数f(x)的表达式为f(x)=$\left\{\begin{array}{l}{\frac{1}{2}x+1,-2≤x≤0}\\{2x+1,0≤x≤1}\end{array}\right.$.

分析 分段求出函数的解析式,即可得出结论.

解答 解:当-2≤x≤0时,直线的方程为$\frac{x}{-2}+y=1$,即y=$\frac{1}{2}$x+1;
0≤x≤1时,设直线的方程为y=kx+b,代入(0,1),(1,3),可得$\left\{\begin{array}{l}{b=1}\\{k+b=3}\end{array}\right.$,
∴k=2,b=1,∴y=2x+1,
∴f(x)=$\left\{\begin{array}{l}{\frac{1}{2}x+1,-2≤x≤0}\\{2x+1,0≤x≤1}\end{array}\right.$.
故答案为:f(x)=$\left\{\begin{array}{l}{\frac{1}{2}x+1,-2≤x≤0}\\{2x+1,0≤x≤1}\end{array}\right.$.

点评 本题考查函数的解析式,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.如果一条直线与一个平面平行,则这条直线与这个平面内直线的位置关系为(  )
A.平行或相交B.平行或异面C.相交或异面D.都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若一个底面是正三角形的三棱柱的正视图如图所示,则其体积等于(  )
A.2$\sqrt{3}$B.4$\sqrt{3}$C.8$\sqrt{3}$D.16$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.下列四个等式中,
①sin(360°+300°)=sin300°;
②cos(180°-300°)=cos300°;
③sin(180°+300°)=-sin300°;
④cos(±300°)=cos300°,
其中正确的等式有3个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x2-(lga+2)x+lgb,f(1)=-2,且f(x)≥-2x对x∈R恒成立.
(1)求f(x)的解析式.
(2)若g(x)=f(x)+2|x-m+1|的最小值为h(m),求h(m)的表达式.
(3)在(2)的条件下解h(m)<1不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.当x∈(1,4)时,求函数f(x)=(log2$\frac{x}{8}$)$•(lo{g}_{2}\frac{x}{4})$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.若x∈[4,+∞),求函数y=$\frac{{x}^{2}-2x+3}{x+1}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.比较下列各组中两个数的大小:
(1)1.5${\;}^{\frac{3}{5}}$,1.7${\;}^{\frac{3}{5}}$;
(2)0.71.5,0.61.5
(3)(-1.2)${\;}^{-\frac{2}{3}}$,(-1.25)${\;}^{-\frac{2}{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若双曲线离心率为$\sqrt{5}$,焦点在x轴上,则其渐近线方程为y=±2x.

查看答案和解析>>

同步练习册答案