分析 (1)过点D作DP⊥AB,过点D作DQ⊥BC,推导出DP⊥BB1,DQ⊥BB1,由此能证明BB1⊥平面ABCD.
(2)设AC与BD的交点为O,${A}_{1}{{C}_{1}}_{\;}^{\;}$与B1D1的交点为O1,以O为原点,分别以OA,OB,OO1所在直线为x,y,z轴,建立空间直角坐标系,利用向量法能求出cosθ.
解答 证明:(1)过点D作DP⊥AB,过点D作DQ⊥BC,
由平面ABCD⊥平面A1B1BA,BB1?平面A1B1BA,
得DP⊥BB1,
由平面ABCD⊥平面B1BCC1,BB1?平面B1BCC1,
得DQ⊥BB1,
又DP∩DQ=D,∴BB1⊥平面ABCD.
解:(2)由AB=AD=$\sqrt{5}$,且cos∠BAD=$\frac{3}{5}$,
在△ABD中利用余弦定理得BD=2,
设AC与BD的交点为O,${A}_{1}{{C}_{1}}_{\;}^{\;}$与B1D1的交点为O1,
以O为原点,分别以OA,OB,OO1所在直线为x,y,z轴,
建立空间直角坐标系,
则B(0,1,0),M(1,$\frac{1}{2}$,$\sqrt{5}$),N(-1,$\frac{1}{2}$,$\sqrt{5}$),
C(-2,0,0),A1(2,0,$\sqrt{5}$),A(2,0,0),
B1(0,1,$\sqrt{5}$),D1(0,-1,$\sqrt{5}$),
设平面BMN的法向量为$\overrightarrow{m}$=(a,b,c),
$\overrightarrow{BM}$=(1,-$\frac{1}{2},\sqrt{5}$),$\overrightarrow{MN}$=(-2,0,0),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{BM}=a-\frac{1}{2}b+\sqrt{5}c=0}\\{\overrightarrow{m}•\overrightarrow{MN}=-2a=0}\end{array}\right.$,取b=10,得$\overrightarrow{m}$=(0,10,$\sqrt{5}$),
设平面AB1D1的法向量为$\overrightarrow{n}$=(x,y,z),
$\overrightarrow{A{B}_{1}}$=(-2,1,$\sqrt{5}$),$\overrightarrow{{B}_{1}{D}_{1}}$=(0,-2,0),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{A{B}_{1}}=-2x+y+\sqrt{5}z=0}\\{\overrightarrow{n}•\overrightarrow{{B}_{1}{D}_{1}}=-2y=0}\end{array}\right.$,取x=5,得$\overrightarrow{n}$=(5,0,2$\sqrt{5}$),
∴cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{2\sqrt{21}}{63}$.
点评 本题考查线面垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{π}{3}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{6}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $x=-\frac{π}{6}$ | B. | $x=-\frac{π}{4}$ | C. | $x=\frac{π}{3}$ | D. | $x=\frac{π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com