ÒÑÖªA(3,0)¼°Ë«ÇúÏßE:-=1,ÈôË«ÇúÏßEµÄÓÒÖ§ÉϵĵãQµ½µãB(m,0)(m¡Ý3)¾àÀëµÄ×îСֵΪ|AB|.?

(1)ÇómµÄÈ¡Öµ·¶Î§,²¢Ö¸³öµ±m±ä»¯Ê±µãBµÄ¹ì¼£G.

(2)¹ì¼£GÉÏÊÇ·ñ´æÔÚÒ»µãD,ËüÔÚÖ±Ïßy=xÉϵÄÉäӰΪP,ʹµÃ¡¤=¡¤?Èô´æÔÚ,ÊÔÖ¸³öË«ÇúÏßEµÄÓÒ½¹µãF·ÖÏòÁ¿Ëù³ÉµÄ±È£»Èô²»´æÔÚ,Çë˵Ã÷ÀíÓÉ.

                 

(3)µ±mΪ¶¨ÖµÊ±,¹ý¹ì¼£GÉϵĵãB(m,0)×÷Ò»ÌõÖ±ÏßlÓëË«ÇúÏßEµÄÓÒÖ§½»ÓÚ²»Í¬µÄÁ½µã,ÇÒÓëÖ±Ïßy=x,y=-x·Ö±ð½»ÓÚM,NÁ½µã,Çó¡÷MONÖܳ¤µÄ×îСֵ.

½â:(1)ÉèM(x,y),Ôòx¡Ý3ÇÒy2=x2-16,

ÄÇôµãMµ½µãBµÄ¾àÀëd==.?

Éèf(x)=d2,Ôòf(x)=(x-)2+M2-16(x¡Ý3).                                 ?

µ±¡Ü3¼´M¡Üʱ,f(x)ÊÇ£Û3,+¡Þ)ÉϵÄÔöº¯Êý,ËùÒÔµ±x=3ʱ,f(x)È¡×îСֵM-3=|AB|;

µ±£¾3¼´M£¾Ê±,f()=£¼m-3.                               ?

ÓÉÉÏÊö¿ÉµÃ,µ±ÇÒ½öµ±3¡ÜM¡Üʱ,Mµ½BµÄ¾àÀëΪ|AB|.?

ËùÒÔµãBµÄ¹ì¼£ÊÇÒ»ÌõÏ߶ÎAN,ÆäÖÐN(,0),¼´¹ì¼£GΪÏ߶ÎAN.          ?

(2)Éè´æÔÚD,ÁîP(3T,4T),ÔòD(T,0),?

ÓÚÊÇ=(3T-3,4T), =(T,0),?

¡à¡¤=25T2-25T.?

ÓÖ¡¤=0,     ¡à25T2-25T=0.?

¡àT=0»òT=1.                                                                                           ?

µ±T=0ʱ,DΪ(0,0)²»Âú×ãÌâÒâ;?

µ±T=1ʱ,DΪ(,0)Ôڹ켣GÉÏ,?

¡à´æÔÚDÂú×ãÌâÒâ.´ËʱD(,0),F(5,0),?

ÓÐ=(2,0),=(,0),=.?

´Ó¶øF·ÖËù³ÉµÄ±ÈΪ¦Ë=.                                                         ?

(3)ÉèM(3s,4s),N(3T,-4T),?

ÒòΪֱÏßlÓëË«ÇúÏßEµÄÓÒÖ§ÓÐÁ½¸ö½»µã,ËùÒÔs£¾0,T£¾0.?

ÓÉM,B,N¹²ÏßÖª=,¼´=.                                        ?

¶ø(s+T)=()(s+T)=2+¡Ý2+2=4.?

ËùÒÔs+T¡Ý,µ±ÇÒ½öµ±s=T=ʱȡµÈºÅ.                                               ?

¡÷OMNµÄÖܳ¤L=|OM|+|ON|+|MN|=5s+5T+?

=5(s+T)+?

¡Ý9(s+T)¡Ý6M.?

ËùÒÔ,µ±s=T=ʱ,¡÷OMNµÄÖܳ¤×îСΪ6M.

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª½¹µãÔÚxÖáÉϵÄË«ÇúÏßCµÄÁ½Ìõ½¥½üÏß¹ý×ø±êÔ­µã£¬ÇÒÁ½Ìõ½¥½üÏßÓëÒÔµãA (0£¬)ΪԲÐÄ£¬1Ϊ°ë¾¶µÄÔ²ÏàÇУ¬ÓÖÖªCµÄÒ»¸ö½¹µãÓëA¹ØÓÚy = x¶Ô³Æ£®

    £¨1£©ÇóË«ÇúÏßCµÄ·½³Ì£»

    £¨2£©ÈôQÊÇË«ÇúÏßÏßCÉϵÄÈÎÒ»µã£¬F1£¬F2Ϊ˫ÇúÏßCµÄ×ó¡¢ÓÒÁ½¸ö½¹µã£¬´ÓF1Òý¡ÏF1QF2µÄƽ·ÖÏߵĴ¹Ïߣ¬´¹×ãΪN£¬ÊÔÇóµãNµÄ¹ì¼£·½³Ì£»

    £¨3£©ÉèÖ±Ïßy = mx + 1ÓëË«ÇúÏßCµÄ×óÖ§½»ÓÚA¡¢BÁ½µã£¬ÁíÒ»Ö±Ïßl¾­¹ýM (¨C2£¬0)¼°ABµÄÖе㣬ÇóÖ±ÏßlÔÚyÖáÉϵĽؾàbµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸