精英家教网 > 高中数学 > 题目详情
10.关于x的方程x2+x+p=0(p∈R)至少存在一个根x0,若|x0|=1,则p=-2或0或1.

分析 分x0为实数和虚数两种情况求解,当x0为实数时,直接代入球p,当x0为虚数时,由|x0|=1,借助于1的立方虚根求得p值.

解答 解:当x0∈R 时,
由|x0|=1,得x0=±1,
若x0=1,则1+1+p=0,即p=-2,此时方程x2+x+p=0化为方程x2+x-2=0,有两实数根;
若x0=-1,则(-1)2-1+p=0,即p=0,此时方程x2+x+p=0化为方程x2+x=0,有两实数根;
当x0为虚数时,
若关于x的方程x2+x+p=0(p∈R)至少存在一个根x0,且|x0|=1,
则x0为1的一个立方虚根,由此可知p=1.
故答案为:-2或0或1.

点评 本题考查实系数一元二次方程根的问题,考查了代入法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.以下四个命题中,真命题的个数为(  )
①命题“?x0∈∁RQ,x${\;}_{{0}^{\;}}$3∈R”的否定是“?x0∈∁RQ,x${\;}_{{0}^{\;}}$3∉Q”;
②若命题“¬P”与命题“p或q”都是真命题,则命题q一定是真命题;
③“a=2”是“直线y=-ax+2与y=$\frac{a}{4}$x-1垂直”的充分不必要条件;
④直线x+$\sqrt{3}$y-2=0与圆x2+y2=4相交于A,B两点,则弦AB的长为$\sqrt{3}$.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若x,y∈R+,且x2+$\frac{{y}^{2}}{2}$=1,求x$\sqrt{1+{y}^{2}}$的最小值$\frac{3\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在某公园有一中年人手拿一个黑色小布袋,袋中装有3只黄色和3只白色的乒乓球(其体积、质地完全相同),吆喝着“摸球送钱”,在他旁边立着一块小黑板写道:摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱.
(Ⅰ)摸出的3个球为白球的概率是多少?
(Ⅱ)摸出的3个球为1个黄球2个白球的概率是多少?
(Ⅲ)“摸球送钱”其实是一种谎言.假定一天中有100人次参加摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少黑心钱?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.用数字0,1,2,3,4,5组成没有重复数字的数①能组成多少个四位数?②能组成多少个四位偶数?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某一几何体的三视图如图所示,按照给出的尺寸(单位:cm),则这个几何体的体积为(  )
A.8cm3B.$\frac{40}{3}$cm3C.12cm3D.$\frac{50}{3}$cm3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知y=|2x+6|+|x-1|-4|x+1|,求y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.函数f(x)=ex+x2+ax+1,若f(x)≥ex在x∈[1,2]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列命题中正确的是(  )
A.若a,b,c成等差数列,则a2,b2,c2成等差数列
B.若a,b,c成等差数列,则log2a,log2b,log2c成等差数列
C.若a,b,c成等差数列,则a+2,b+2,c+2成等差数列
D.若a,b,c成等差数列,则2a,2b,2c成等差数列

查看答案和解析>>

同步练习册答案