精英家教网 > 高中数学 > 题目详情
设函数f(x)=sinωx+2
3
sin2
ωx
2
(ω>0)的最小正周期为
3

(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若将y=f(x)的图象向左平移
π
2
个单位可得y=g(x)的图象,求不等式g(x)≥2
3
的解集.
分析:(Ⅰ)利用倍角公式和两角差的正弦公式,对解析式进行化简后,由函数的周期求出ω的值,即求出函数的解析式;
(Ⅱ)先由“左加右减”求出函数的解析式,再把“3x-
π
3
”看成一个整体,利用正弦函数的性质和条件,列出不等式求出它的解集.
解答:解:(Ⅰ)∵f(x)=sinωx+2
3
sin2
ωx
2
=sinωx+
3
(1-cosωx)=2sin(ωx-
π
3
)+
3

∴由函数f(x)的周期T=
ω
=
3
,可得ω=3
f(x)=2sin(3x-
π
3
)+
3

(Ⅱ)由题意得,g(x)=f(x+
π
2
)

=2sin[3(x+
π
2
)-
π
3
]+
3
=2sin(3x+
6
)+
3

∴由g(x)≥2
3
,得sin(3x+
6
)≥
3
2

2kπ+
π
3
≤3x+
6
≤2kπ+
3
,(k∈Z)

2kπ
3
-
18
≤x≤
2kπ
3
-
π
6
,(k∈Z)

∴所求不等式的解集为{x|
2kπ
3
-
18
≤x≤
2kπ
3
-
π
6
,(k∈Z)}
点评:本题考查了三角恒等变换的公式和正弦函数性质的应用,主要利用对应的公式对解析式化简后,利用“左加右减”的基本法则求函数的解析式,利用“整体思想”进行求解,要求熟练掌握公式并能灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•安徽模拟)设函数f(x)=sin(x+
π
6
)+2sin2
x
2
,x∈[0,π]

(Ⅰ)求f(x)的值域;
(Ⅱ)记△ABC的内角A、B、C的对边长分别为a,b,c,若f(B)=1,b=1,c=
3
,求a
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(ωx+φ)(ω>0,-
π
2
<φ<
π
2
)
,给出以下四个论断:
①它的图象关于直线x=
π
12
对称;     
②它的图象关于点(
π
3
,0)
对称;
③它的周期是π;                   
④在区间[0,
π
6
)
上是增函数.
以其中两个论断作为条件,余下的一个论断作为结论,写出你认为正确的命题:
条件
①③
①③
结论
;(用序号表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(ωx+
π
4
)(x∈R,ω>0)
的部分图象如图所示.
(1)求f(x)的表达式;
(2)若f(x)•f(-x)=
1
4
x∈(
π
4
π
2
)
,求tanx的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(2x+
π
3
)
,则下列结论正确的是(  )

查看答案和解析>>

同步练习册答案