精英家教网 > 高中数学 > 题目详情
7.某中学对高二甲、乙两个同类班级,进行“加强‘语文阅读理解’训练,对提高‘数学应用题’得分率的作用”的试验,其中甲班为试验班(加强语文阅读理解训练),乙班为对比班(常规教学,无额外训练),在试验前的测试中,甲、乙两班学生在数学应用题上的得分率基本一致,试验结束后,统计几次数学应用题测试的平均成绩(均取整数)如下表所示:
60分以下61-70分71-80分81-90分91-100分
甲班(人数)361118
12乙班(人数)713101010
现规定平均成绩在80分以上(不含80分)的为优秀.
(I)试分析估计两个班级的优秀率;
(Ⅱ)由以上统计数据填写下面2x2列联表,根据以上数据,能杏有95%的把握认为“加强‘语文阅读理解’训练对提高‘数学应用题’得分率”有帮助?
优秀人数非优秀人数合计
甲班
乙班
合计
参考公式及数据:x2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(x2≥k00.500.400.250.150.100.050.0280.0100.0050.001
k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

分析 (Ⅰ)根据所给的表格,看出两个班的所有的人数和两个班优秀的人数,分别用两个班优秀的人数除以总人数,得到两个班的优秀率.
(Ⅱ)根据所给的数据列出列联表,做出观测值,把观测值同临界值进行比较,得到有95%的把握认为有帮助.

解答 解:(Ⅰ)由题意知,甲、乙两班均有学生50人,
甲班优秀人数为30人,优秀率为$\frac{30}{50}$=60%,
乙班优秀人数为20人,优秀率为$\frac{20}{50}$=40%,
所以甲、乙两班的优秀率分别为60%和50%.…(4分)
(Ⅱ)

优秀人数非优秀人数合计
甲班302050
乙班203050
合计5050100
…(8分)
因为x2=$\frac{100(30×30-20×20)^{2}}{50×50×50×50}$=4>3.841…(10分)
所以由参考数据知,有95%的把握认为有帮助.   …(12分)

点评 本题考查列联表,考查独立性检验的作用,在解题时注意求这组数据的观测值时,注意数字的运算,因为这种问题一般给出公式,我们要代入公式进行运算,得到结果.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.7个人排成一排,按下列要求各有多少种排法?
(1)其中甲不站排头,乙不站排尾;
(2)其中甲、乙、丙3人两两不相邻;
(3)其中甲、乙中间有且只有1人;
(4)其中甲、乙、丙按从左到右的顺序排列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,∠BAC=90°,D是BC边的中点,AE⊥AD,AE交CB的延长线于E,则下面结论中正确的是(  )
A.△AED∽△ACBB.△AEB∽△ACDC.△BAE∽△ACED.△AEC∽△DAC

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知α∈($\frac{π}{2}$,π),sinα=$\frac{3}{5}$,则tan(α+$\frac{3π}{4}$)=-7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设随机变量x~N(1,δ2),若P(x>2)=0.3,则P(x>0)等于(  )
A.0.3B.0.4C.0.6D.0.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x2ex,e为自然对数的底数.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)证明:?x1,x2∈(-∞,0],f(x1)-f(x2)$≤\frac{4}{{e}^{2}}$;
(Ⅲ)当n≥2时,求证(n+1)•(en-1)<4(e-1)•n•en-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,我们知道圆环是线段AB绕圆心O旋转一周所形成的平面图形,所以,圆环的面积S=π(R2-r2)=(R-r)×2π×$\frac{R+r}{2}$可以看作是以线段AB=R-r为宽,以AB的中心绕圆心O旋转一周所形成的圆的周长2π×$\frac{R+r}{2}$为长的矩形面积.请将上述想法拓展到空间,并解决下列问题:若将平面区域M={(x,y)|(x-2)2+y2≤1}绕y轴旋转一周,则所形成的旋转体的体积是4π2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.把正整数按“S”型排成了如图所示的三角形数表,第n行有n个数,对于第n行按从左往右的顺序依次标记第1列,第2列,…,第m列,(比如三角形数表中12在第5行第4列,18在第6行第3列),则三角形数表中2015在(  )
A.第63行第2列B.第62行第12列C.第64行第30列D.第64行第60列

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=lg(1-2x)的定义域为集合M,g(x)=$\sqrt{4-{2}^{x}}$的定义域为集合N,记P=(∁RM)∩N.
(1)求P;
(2)求函数h(x)=log2x2+1(x∈P)的值域.

查看答案和解析>>

同步练习册答案