精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=$\left\{\begin{array}{l}3+{log_2}(x-1),x>0\\{x^2}-x-1,x≤0\end{array}$,若f(a)=5,则a的取值集合为(  )
A.{-2,3,5}B.{-2,3}C.{-2,5}D.{3,5}

分析 当a>0时,f(a)=3+log2(a-1)=5,当a≤0时,f(a)=a2-a-1=5.由此能求出a的取值集合.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}3+{log_2}(x-1),x>0\\{x^2}-x-1,x≤0\end{array}$,f(a)=5,
∴当a>0时,f(a)=3+log2(a-1)=5,解得a=5,
当a≤0时,f(a)=a2-a-1=5,解得a=-2或a=3(舍).
∴a的取值集合为{-2,5}.
故选:C.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.如图1是某同学进入高三后12次数学测试成绩的茎叶图,这12次成绩记为A1,A2,…,A12,图2是统计茎叶图中成绩在一定范围内次数的算法流程图,那么该算法流程输出的结果是(  )
A.5B.7C.106D.114

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=xlnx-ax2-x.
(1)当a=$\frac{1}{2}$时,证明:f(x)在定义域上为减函数;
(2)若a∈R,讨论函数f(x)的零点情况.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,且经过点D(2$\sqrt{2}$,2$\sqrt{2}$).
(1)求C的方程;
(2)若P(x0,y0)是第一象限C上异于点D的动点,过原点向圆(x-x02+(y-y02=8作切线交C于G,H两点,设直线OG,OH的斜率分别为kOG,kOH,证明:2kOGkOH+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若x,y满足约束条件$\left\{\begin{array}{l}2x+y-4≥0\\ 2x-3y-3≤0\\ x-4y+4≤0\end{array}\right.$,则z=x+2y的最小值为(  )
A.$\frac{19}{8}$B.4C.5D.$\frac{46}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某数学老师对所任教的两个班级各抽取30名学生进行测试,分数分布如表:
分数区间45
[0,30)0.10.2
[30,60)0.20.2
[60,90)0.30.4
[90,120)0.20.1
[120,150]0.20.1
(1)若成绩120分以上为优秀,求从乙班参加测试的成绩在90分以上(含90分)的学生中,随机任取2名学生,恰有1人为优秀的概率;
(2)根据以上数据完成下面的2×2列联表,则犯错概率小于0.1的前提下,是否有足够的把握认为学生的数学成绩优秀与否和班级有关?
优秀不优秀总计
甲班62430
乙班32730
总计95160
参考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
下面的临界值供参考:
k02.0722.7063.8415.0246.6357.87910.828
P(K2≥k00.150.100.050.0250.0100.0050.001

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)图象如图所示,则f(x)的解析式可能是(  )
A.f(x)=lnx-sinxB.f(x)=lnx+cosxC.f(x)=lnx+sinxD.f(x)=lnx-cosx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.作出函数y═-$\frac{1}{x+1}$的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在平面直角坐标系中xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=2+\sqrt{2}cosθ}\\{y=\sqrt{2}sinθ}\end{array}\right.$(θ为参数),则曲线C是(  )
A.关于x轴对称的图形B.关于y轴对称的图形
C.关于原点对称的图形D.关于直线y=x对称的图形

查看答案和解析>>

同步练习册答案