精英家教网 > 高中数学 > 题目详情

【题目】给出下列五个命题:

①函数fx=2a2x-1-1的图象过定点(-1);

②已知函数fx)是定义在R上的奇函数,当x≥0时,fx=xx+1),若fa=-2则实数a=-12

③若loga1,则a的取值范围是(1);

④若对于任意xRfx=f4-x)成立,则fx)图象关于直线x=2对称;

⑤对于函数fx=lnx,其定义域内任意x1x2都满足f

其中所有正确命题的序号是______

【答案】③④⑤

【解析】

由指数函数的图象的特点解方程可判断①;由奇函数的定义,解方程可判断②;由对数不等式的解法可判断③;由函数的对称性可判断④;由对数函数的运算性质可判断⑤.

解:①函数,则,故①错误;

②因为当时, ,且,所以由函数fx)是定义在R上的奇函数得,故②错误;

③若,可得,故③正确;

④因为,则fx)图象关于直线x=2对称,故④正确;

⑤对于函数

当且仅当取得等号,其定义域内任意都满足,故⑤正确.

故答案为:③④⑤.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;
(1)若∠BFD=90°,△ABD的面积为 ,求p的值及圆F的方程;
(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥A-EFCB中,为等边三角形,平面AEF平面EFCB,
,O为EF的中点.
(Ⅰ)求证:
(Ⅱ)求二面角F-AE-B的余弦值;
(Ⅲ)若BE平面AOC,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,证明:当时,

(2)若只有一个零点,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心轴的正半轴上,半径为2,且被直线截得的弦长为.

(1)求圆的方程;

(2)设是直线上的动点,过点作圆的切线,切点为,证明:经过三点的圆必过定点,并求出所有定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线截圆所得的弦长为.直线的方程为

(1)求圆的方程;

(2)若直线过定点,点在圆上,且为线段的中点,求点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是定义在上的函数.①若存在,使成立,则函数上单调递增;②若存在,使成立,则函数上不可能单调递减;③若存在对于任意都有成立,则函数上单调递增.则以上述说法正确的是_________.(填写序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:

①若函数满足,则函数的图象关于直线对称;

②点关于直线的对称点为

③通过回归方程可以估计和观测变量的取值和变化趋势;

④正弦函数是奇函数,是正弦函数,所以是奇函数,上述推理错误的原因是大前提不正确.

其中真命题的序号是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,已知b(1+cosC)=c(2﹣cosB).
(Ⅰ)求证:a,c,b成等差数列;
(Ⅱ)若C= ,△ABC的面积为4 ,求c.

查看答案和解析>>

同步练习册答案