精英家教网 > 高中数学 > 题目详情
已知a,b为正实数,且,若a+b-c≥0对于满足条件的a,b恒成立,则c的取值范围为( )
A.
B.(-∞,3]
C.(-∞,6]
D.
【答案】分析:a+b=(a+b))=(3++),利用基本不等式可求出a+b的最小值(a+b)min,要使a+b-c≥0对于满足条件的a,b恒成立,只要值(a+b)min-c≥0即可.
解答:解:a,b都是正实数,且a,b满足①,
则a+b=(a+b))=(3++
(3+2)=+
当且仅当即b=a②时,等号成立.
联立①②解得a=,b=,故a+b的最小值为+
要使a+b-c≥0恒成立,只要+-c≥0,即c≤+,故c的取值范围为(-∞,+].
故选A.
点评:本题主要考查基本不等式的应用,注意基本不等式的使用条件:一正、二定、三相等,以及函数的恒成立问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a,b为正实数.
(1)若函数f(x)=
lnxx
,求f(x)的单调区间
(2)若e<a<b(e为自然对数的底),求证:ab>ba

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b为正实数.
(1)求证:
a2
b
+
b2
a
≥a+b;
(2)利用(I)的结论求函数y=
(1-x)2
x
+
x2
1-x
(0<x<1)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•静安区一模)(1)已知a、b为正实数,a≠b,x>0,y>0.试比较
a2
x
b2
y
(a+b)2
x+y
的大小,并指出两式相等的条件;
(2)求函数f(x)=
2
x
+
9
1-2x
,x∈(0,
1
2
)
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a、b为正实数,试比较
a
b
+
b
a
a
+
b
的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b为正实数,且
2
a
+
1
b
=1
,则a+2b的最小值为
 

查看答案和解析>>

同步练习册答案