精英家教网 > 高中数学 > 题目详情

【题目】△ABC在内角A、B、C的对边分别为a,b,c,已知a=bcosC+csinB.
(Ⅰ)求B;
(Ⅱ)若b=2,求△ABC面积的最大值.

【答案】解:(Ⅰ)由已知及正弦定理得:sinA=sinBcosC+sinBsinC①,
∵sinA=sin(B+C)=sinBcosC+cosBsinC②,
∴sinB=cosB,即tanB=1,
∵B为三角形的内角,
∴B=
(Ⅱ)SABC= acsinB= ac,
由已知及余弦定理得:4=a2+c2﹣2accos ≥2ac﹣2ac×
整理得:ac≤ ,当且仅当a=c时,等号成立,
则△ABC面积的最大值为 × × = × ×(2+ )= +1.
【解析】(Ⅰ)已知等式利用正弦定理化简,再利用两角和与差的正弦函数公式及诱导公式变形,求出tanB的值,由B为三角形的内角,利用特殊角的三角函数值即可求出B的度数;(Ⅱ)利用三角形的面积公式表示出三角形ABC的面积,把sinB的值代入,得到三角形面积最大即为ac最大,利用余弦定理列出关系式,再利用基本不等式求出ac的最大值,即可得到面积的最大值.
【考点精析】解答此题的关键在于理解正弦定理的定义的相关知识,掌握正弦定理:,以及对余弦定理的定义的理解,了解余弦定理:;;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本题12分)设函数是定义域为R的奇函数.

(1)求k的值;

(2)若,试说明函数的单调性,并求使不等式恒成立的的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是定义在上的奇函数,且对任意实数,恒有,当时,

(1)求证: 是周期函数;

(2)当时,求的解析式;

(3)计算

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}的前n项和为Sn , 若对于任意的正整数n都有Sn=2an﹣3n.
(1)设bn=an+3,求证:数列{bn}是等比数列,并求出{an}的通项公式;
(2)求数列{nan}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)当时,求的最大值与最小值;

(Ⅱ)讨论方程的实根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若平面区域 夹在两条斜率为 的平行直线之间,则这两平行直线间的距离的最小值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】O为原点的直角坐标系中,点A(4,﹣3)为△OAB的直角顶点,已知AB=2OA,且点B的纵坐标大于0
(1)求 的坐标;
(2)求圆C1:x2﹣6x+y2+2y=0关于直线OB对称的圆C2的方程;在直线OB上是否存在点P,过点P的任意一条直线如果和圆C1圆C2都相交,则该直线被两圆截得的线段长相等,如果存在求出点P的坐标,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若a>b>1,0<c<1,则( )
A.ac<bc
B.abc<bac
C.ca<cb
D.logac<logbc

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校学生社团为了解“大数据时代”下大学生就业情况的满意度,对20名学生进行问卷计分调查(满分100分),得到如图所示的茎叶图:

(1)计算男生打分的平均分,观察茎叶图,评价男女生打分的分散程度;

(2)从打分在80分以上的同学随机抽3人,求被抽到的女生人数的分布列和数学期望.

查看答案和解析>>

同步练习册答案