精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,曲线C上的点到点的距离与它到直线的距离之比为,圆O的方程为,曲线Cx轴的正半轴的交点为A,过原点O且异于坐标轴的直线与曲线C交于BC两点,直线AB与圆O的另一交点为P,直线PD与圆O的另一交点为Q,其中,设直线ABAC的斜率分别为

1)求曲线C的方程,并证明到点M的距离

2)求的值;

3)记直线PQBC的斜率分别为,是否存在常数,使得?若存在,求的值,若不存在,说明理由.

【答案】1,证明见解析;(2;(3)存在;

【解析】

1)利用两点间距离公式和点到直线的距离公式列出方程,从而求出曲线的方程,并能证明到点的距离;(2)设,则,代入椭圆方程,运用直线的斜率公式,化简即可得到所求值;(3)联立直线和椭圆方程,求得点坐标,再求出直线和直线的斜率,从而得到的值.

1)曲线上的点到点的距离

与它到直线的距离之比为

所以可得

整理得曲线的方程为:

是椭圆的右焦点,是椭圆上的点,

所以到点的距离.

2)设,则

所以

所以

.

3)联立,得到

所以,其中

所以

联立,得到

所以,其中

所以

所以

所以

所以存在常数,使得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知为两非零有理数列(即对任意的均为有理数),为一无理数列(即对任意的为无理数).

1)已知,并且对任意的恒成立,试求的通项公式.

2)若为有理数列,试证明:对任意的恒成立的充要条件为

3)已知,对任意的恒成立,试计算

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在菱形中,的中点,平面,且在矩形中,.

1)求证:

2)求证:平面

3)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:极坐标与参数方程

在平面直角坐标系中,曲线的参数方程为为参数).

1)求曲线的普通方程;

2)经过点(平面直角坐标系中点)作直线交曲线两点,若恰好为线段的三等分点,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)设,且,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)若恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

() 若函数有零点, 求实数的取值范围;

(Ⅱ) 证明: 当时, .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线与抛物线交于两点,与椭圆交于两点,直线为坐标原点)的斜率分别为,若.

(1)是否存在实数,满足,并说明理由;

(2)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)设,若函数的两个极值点恰为函数的两个零点,且的范围是,求实数a的取值范围.

查看答案和解析>>

同步练习册答案