精英家教网 > 高中数学 > 题目详情
已知椭圆的两个焦点分别为,离心率
(1)求椭圆方程;
(2)一条不与坐标轴平行的直线l与椭圆交于不同的两点M、N,且线段MN中点的横坐标为–,求直线l倾斜角的取值范围。
(Ⅰ);(Ⅱ)

试题分析:(Ⅰ)设椭圆方程为
由已知,,由解得a=3,   
为所求 
(Ⅱ)解法一:设直线l的方程为y=kx+b(k≠0)
解方程组
将①代入②并化简,得 
       
将④代入③化简后,得。                           
解得   ∴ , 所以倾斜角  。                            
解法二:(点差法)设的中点为在椭圆内,且直线l不与坐标轴平行。
因此,

∴两式相减得 
即  
。所以倾斜角
点评:典型题,涉及直线与椭圆的位置关系问题,通过联立方程组得到一元二次方程,应用韦达定理可实现整体代换,简化解题过程。涉及椭圆上两点问题,可以利用“点差法”,建立连线的斜率与a,b的关系。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知双曲线的中心在原点,对称轴为坐标轴,一条渐近线方程为,右焦点,双曲线的实轴为为双曲线上一点(不同于),直线分别与直线交于两点
(1)求双曲线的方程;
(2)是否为定值,若为定值,求出该值;若不为定值,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知点F( 1,0),与直线4x+3y + 1 =0相切,动圆M与及y轴都相切. (I )求点M的轨迹C的方程;(II)过点F任作直线l,交曲线C于A,B两点,由点A,B分别向各引一条切线,切点 分别为P,Q,记.求证是定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知两定点,曲线上的点P到的距离之差的绝对值是6,则该曲线的方程为(   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若椭圆长轴长与短轴长之比为2,它的一个焦点是(2,0),则椭圆的标准方程是               

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知曲线(a>0,b>0)的两个焦点为,若P为其上一点, , 则双曲线离心率的取值范围为(     )
A.(3,+)B.C.(1,3)D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心为坐标原点O,焦点在x轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,=(3,-1)共线.
(1)求椭圆的离心率;
(2)设M为椭圆上任意一点,且),证明为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点分别是双曲线的左、右焦点,过且垂直于轴的直线与双曲线交于两点,若是钝角三角形,则该双曲线离心率的取值范围是
(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)设直线与直线交于点.
(1)当直线点,且与直线垂直时,求直线的方程;
(2)当直线点,且坐标原点到直线的距离为时,求直线的方程.

查看答案和解析>>

同步练习册答案