【题目】如图所示,在正方体中,、分别为和的中点.
(1)求证:平面;
(2)求直线与面所成的角的余弦值.
科目:高中数学 来源: 题型:
【题目】口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出2球,事件“取出的两球同色”,“取出的2球中至少有一个黄球”,“取出的2球至少有一个白球”,“取出的两球不同色”,“取出的2球中至多有一个白球”.下列判断中正确的序号为________.
①与为对立事件;②与是互斥事件;③与是对立事件:④;⑤.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度(单位:千克/年)是养殖密度(单位:尾/立方米)的函数.当时,的值为2千克/年;当时,是的一次函数;当时,因缺氧等原因,的值为0千克/年.
(1)当时,求关于的函数表达式.
(2)当养殖密度为多少时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=Asin(2ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示
(1)求A,ω,φ的值;
(2)求图中a,b的值及函数f(x)的递增区间;
(3)若α∈[0,π],且f(α)=,求α的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种计算机病毒是通过电子邮件进行传播的,下表是某公司前5天监测到的数据:
第天 | 1 | 2 | 3 | 4 | 5 |
被感染的计算机数量(台) | 10 | 20 | 39 | 81 | 160 |
则下列函数模型中,能较好地反映计算机在第天被感染的数量与之间的关系的是
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数定义在上且满足下列两个条件:
①对任意都有;
②当时,有,
(1)求,并证明函数在上是奇函数;
(2)验证函数是否满足这些条件;
(3)若,试求函数的零点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知矩形ABCD所在平面垂直于直角梯形ABPE所在平面于直线AB,且ABBP2,AD=AE=1,AE⊥AB,且AE∥BP.
(1)求平面PCD与平面ABPE所成的二面角的余弦值;
(2)线段PD上是否存在一点N,使得直线BN与平面PCD所成角的正弦值等于?若存在,试确定点N的位置;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com