精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥PABCD中,AB=AD=2BC=2BCADABAD,△PBD为正三角形.且PA=2

1)证明:平面PAB⊥平面PBC

2)若点P到底面ABCD的距离为2E是线段PD上一点,且PB∥平面ACE,求四面体A-CDE的体积.

【答案】(1)见解析;(2)

【解析】

1)证明ABPBABBC,推出AB⊥平面PBC,然后即可证明平面PAB⊥平面PBC

2)设BDAC交于点O,连接OE,点P到平面ABCD的距离为2,点E到平面ABCD的距离为h==,通过VA-CDE=VE-CDA,转化求解四面体A-CDE的体积.

1,且

为正三角形,,又

,又

平面,又平面

平面平面

2)如图,设交于点

,连接

平面,则

又点到平面的距离为2

到平面的距离为

即四面体的体积为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数a0a1)是R上的单调函数,则a的取值范围是(

A. (0,] B. [ C. [] D. ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,则方程所有根的和等于(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是椭圆上不同的两点,的中点坐标为

1)证明:直线经过椭圆的右焦点.

2)设直线不经过点且与椭圆相交于两点,若直线与直线的斜率的和为1,试判断直线是否经过定点,若经过定点,请求出该定点;若不经过定点,请给出理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,圆,如图,分别交轴正半轴于点.射线分别交于点,动点满足直线轴垂直,直线轴垂直.

1)求动点的轨迹的方程;

2)过点作直线交曲线与点,射线与点,且交曲线于点.问:的值是否是定值?如果是定值,请求出该定值;如果不是定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,错误命题是

A. ,则的逆命题为真

B. 线性回归直线必过样本点的中心

C. 在平面直角坐标系中到点的距离的和为的点的轨迹为椭圆

D. 在锐角中,有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的极坐标方程为,直线,直线.以极点为原点,极轴为轴的正半轴建立平面直角坐标系.

1)求直线的直角坐标方程以及曲线的参数方程;

2)已知直线与曲线交于两点,直线与曲线C交于两点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论在区间上的单调性;

2)若时,,求整数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知abc为正数,fx)=|x+a|+|x+b|+|xc|.

1)若abc1,求函数fx)的最小值;

2)若f0)=1abc不全相等,求证:b3c+c3a+a3babc.

查看答案和解析>>

同步练习册答案