精英家教网 > 高中数学 > 题目详情
20.2016年微信用户数量统计显示,微信注册用户数量已经突破9.27亿.微信用户平均年龄只有26岁,97.7%的用户在50岁以下,86.2%的用户在18-36岁之间.为调查大学生这个微信用户群体中每人拥有微信群的数量,现从北京市大学生中随机抽取100位同学进行了抽样调查,结果如下:
微信群数量频数频率
0至5个00
6至10个300.3
11至15个300.3
16至20个ac
20个以上5b
合计1001
(Ⅰ)求a,b,c的值;
(Ⅱ)若从这100位同学中随机抽取2人,求这2人中恰有1人微信群个数超过15个的概率;
(Ⅲ)以这100个人的样本数据估计北京市的总体数据且以频率估计概率,若从全市大学生中随机抽取3人,记X表示抽到的是微信群个数超过15个的人数,求X的分布列和数学期望EX.

分析 (Ⅰ)由频率分布列的性质及$频率=\frac{频数}{总数}$,能求出a,b,c的值.
(Ⅱ)记“2人中恰有1人微信群个数超过15个”为事件A,利用等可能事件概率计算公式能求出2人中恰有1人微信群个数超过15个的概率.
(Ⅲ)依题意可知,微信群个数超过15个的概率为$P=\frac{2}{5}$.X的所有可能取值0,1,2,3,由此能求出X的分布列和数学期望EX.

解答 (本小题共13分)
解:(Ⅰ)由已知得:0+30+30+a+5=100,
解得a=35,
∴$b=\frac{5}{100}=\frac{1}{20}$,$c=\frac{35}{100}=\frac{7}{20}$.…(3分)
(Ⅱ)记“2人中恰有1人微信群个数超过15个”为事件A,
则$P(A)=\frac{{C_{40}^1C_{60}^1}}{{C_{100}^2}}=\frac{16}{33}$.
所以,2人中恰有1人微信群个数超过15个的概率为$\frac{16}{33}$. …(7分)
(Ⅲ)依题意可知,微信群个数超过15个的概率为$P=\frac{2}{5}$.
X的所有可能取值0,1,2,3.…(8分)
则$P({X=0})=C_3^0{(\frac{2}{5})^0}{(1-\frac{2}{5})^3}=\frac{27}{125}$,
$P({X=1})=C_3^1{(\frac{2}{5})^1}{(1-\frac{2}{5})^2}=\frac{54}{125}$,
$P({X=2})=C_3^2{(\frac{2}{5})^2}{(1-\frac{2}{5})^1}=\frac{36}{125}$,
$P({X=3})=C_3^3{(\frac{2}{5})^3}{(1-\frac{2}{5})^0}=\frac{8}{125}$.
其分布列如下:

X0123
P$\frac{27}{125}$$\frac{54}{125}$$\frac{36}{125}$$\frac{8}{125}$
所以,$EX=0×\frac{27}{125}+1×\frac{54}{125}+2×\frac{36}{125}+3×\frac{8}{125}=\frac{6}{5}$.…(13分)

点评 本题考查概率的求法,考查离散型随机变量的分布列、数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.三棱锥S-ABC中,∠ASB=∠ASC=90°,∠BSC=60°,SA=SB=SC=2,点G是△ABC的重心,则|$\overrightarrow{SG}$|等于(  )
A.4B.$\frac{8}{3}$C.$\frac{4\sqrt{3}}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.观察下列等式,按此规律,第n个等式的右边等于3n2-2n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}的前n项和为Sn,a1=1,an≠0,2an•an+1=tSn-2,其中t为常数.
(Ⅰ)设bn=an+1+an,求证:{bn}为等差数列;
(Ⅱ)若t=4,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.一个几何体的三视图如图所示.已知这个几何体的体积为8,则h=(  )
A.1B.2C.3D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设实数x、y满足x+2xy-1=0,则x+y取值范围是$(-∞,-\sqrt{2}-\frac{1}{2}]$∪$[\sqrt{2}-\frac{1}{2},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在等差数列{an}中,已知a1+a2=5,a4+a5=23,则该数列的前10项的和S10=145.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知f(x)=ax2-$\sqrt{2}$(a>0),且f($\sqrt{2}$)=2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.命题“任意正实数a,函数f(x)=x2+ax在[0,+∞)上都是增函数”的否定是“存在正实数a,函数f(x)=x2+ax在[0,+∞)上不都是增函数”.

查看答案和解析>>

同步练习册答案