精英家教网 > 高中数学 > 题目详情
1.函数f(x)的图象如图所示,下列选项中正确的是(  )
 
A.0<f′(2)<f′(3)<f(3)-f(2)B.0<f′(3)<f′(2)<f(3)-f(2)C.0<f′(3)<f(3)-f(2)<f′(2)D.0<f(3)-f(2)<f′(2)<f′(3)

分析 利用图形f′(x)是单调递减函数,导数的概念,几何意义判断大小关系即可.

解答 解:根据导数的概念,几何意义得出:f′(3)以A(3,f(3))为切点的切线的斜率,
f′(2)以A(2,f(2))为切点的切线的斜率,
$\frac{f(3)-f(2)}{3-2}$为A(2,f(2)),B(3,f(3))的割线AB的斜率,
根据图形可判断f′(x)是单调递减函数,
故f′(3)<f(3)-f(2)<f′(2),
故选:C.

点评 本题考察了导数的概念,几何意义,数形结合的数学的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.对有关数据的分析可知,每一立方米混凝土的水泥用量x(单位:kg)与28天后混凝土的抗压度y(单位:kg/cm2)之间具有线性相关关系,其线性回归方程为$\stackrel{∧}{y}$=0.30x+9.7.根据建设项目的需要,28天后混凝土的抗压度不得低于90.7kg/cm2,每立方米混凝土的水泥用量最少应为270kg.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=$\frac{\sqrt{x}}{x-1}$的定义域是(  )
A.[0,+∞)B.[0,1)∪(1,+∞)C.(0,1)D.(0,1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图是一个空间几何体的三视图,则该几何体的全面积为(  )
A.12B.16C.$\frac{{4\sqrt{3}}}{3}$+4D.4$\sqrt{3}$+4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知随机变量ξ服从正态分布N(1,σ2),且P(ξ<2)=0.6,则P(0<ξ<1)=0.1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\left\{{\begin{array}{l}{3x+2({x<1})}\\{{x^2}+ax({x≥1})}\end{array}}$,若f(f(0))=a,则实数a=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如果cosα=$\frac{4}{5}$,那么$sin(α+\frac{π}{4})-\frac{{\sqrt{2}}}{2}$cosα等于(  )
A.$\frac{{2\sqrt{2}}}{5}$B.±$\frac{{2\sqrt{2}}}{5}$C.$\frac{{3\sqrt{2}}}{10}$D.±$\frac{{3\sqrt{2}}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设f(x)是定义在R上的偶函数,对任意x∈R,都有f(x-1)=f(x+1),且当x∈[0,1]时,f(x)=1-3x,若在区间[-6,6]内关于x的方程f(x)-loga(x+3)=0(0<a<1)恰有5个不同的实数根,则a的取值范围是(  )
A.$(\frac{{\sqrt{6}}}{6},\frac{1}{2})$B.$(\frac{{\sqrt{6}}}{6},1)$C.$(\frac{1}{2},1)$D.$(\frac{1}{2},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,三内角A,B,C的对边分别为a,b,c,若满足tanB=$\frac{cos(C-B)}{sinA+sin(C-B)}$,
(1)判断△ABC的形状,并加以证明;
(2)当a=2,∠B=x时,将y=$\frac{b+c+1}{bc}$表示成y=f(x)的形式,并求此函数的定义域,当x为何值时,y=f(x)有最值?并求出最值.

查看答案和解析>>

同步练习册答案