精英家教网 > 高中数学 > 题目详情

数列满足:,(≥3),记
(≥3).
(1)求证数列为等差数列,并求通项公式;
(2)设,数列{}的前n项和为,求证:<<.

(1) (2)详见解析.

解析试题分析:(1)本题实质由和项求通项:
当n≥3时,因①, 故②,
②-①,得  bn-1-bn-2===1,为常数,所以,数列{bn}为等差数列因  b1==4,故 (2)本题证明实质是求和,而求和关键在于对开方:因 
故 .
所以 ,即  n<Sn
<,于是. 于是
解 (1)方法一 当n≥3时,因①,
②      2分
②-①,得  bn-1-bn-2===1,为常数,所以,数列{bn}为等差数列  5分
因  b1==4,故    8分
方法二 当n≥3时,a1a2an="1+an+1," a1a2anan+1="1+an+2," 将上两式相除并变形,得  ------2分 于是,当n∈N*时,  
 
.   5分
又a4=a1a2a3-1=7,故bn=n+3(n∈N*).
所以数列{bn}为等差数列,且bn=n+3   8分
(2) 因 ,  10分
故 .      12分
所以 
即  n<Sn 。     14分
<,于是. 于是.---16分
考点:等差数列定义,裂项求和

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知为等差数列,且.
(1)求的通项公式;(2)若等比数列满足,求的前n项和公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角的对边分别为,且成等差数列
(1)若,求的面积
(2)若成等比数列,试判断的形状

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列{an}是一个公差为的等差数列,已知它的前10项和为,且a1,a2,a4 成等比数列.
(1)求数列{an}的通项公式;
(2)若,求数列的前项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(满分16分)
设数列的前项和为.若对任意的正整数,总存在正整数,使得,则称是“数列”.
(1)若数列的前项和为,证明:是“数列”.
(2)设是等差数列,其首项,公差,若是“数列”,求的值;
(3)证明:对任意的等差数列,总存在两个“数列” ,使得成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列满足
(1)证明:数列是等差数列;
(2)设,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分18分)本题共3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.
已知数列满足.
,求的取值范围;
是公比为等比数列,的取值范围;
成等差数列,且,求正整数的最大值,以及取最大值时相应数列的公差.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知{an}是正数组成的数列,a1=1,且点(,an+1)( n ∈N*)在函数y=x2+1的图象上.
(1)求数列{an}的通项公式;
(2)若数列 满足b1=1,,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列{}中, (1)求
(2)设,求的前n项和

查看答案和解析>>

同步练习册答案