精英家教网 > 高中数学 > 题目详情
16.如图,在四棱锥E-ABCD中,底面ABCD为正方形,侧面EAD是正三角形,平面EAD⊥平面ABCD为正方形,P为EC的中点.
(1)求证:EA∥平面PBD;
(2)若正方形ABCD的边长为2,求三棱锥E-PBD的体积及点P到平面EBD的距离.

分析 (1)连结AC,与BD交于点O,连接OP,则O是AC的中点,OP∥AE,即可证明EA∥平面PBD;
(2)三棱锥E-PBD的体积=三棱锥E-BCD的体积-三棱锥P-BDC的体积,利用体积公式,可求点P到平面EBD的距离.

解答 (1)证明:如图,连结AC,与BD交于点O,连接OP,则O是AC的中点,
又P为EC的中点,∴OP∥AE.
又∵AE?平面PBD,OP?PBD,
∴EA∥平面PBD;
(2)解:三棱锥E-PBD的体积=三棱锥E-BCD的体积-三棱锥P-BDC的体积
=$\frac{1}{3}×\frac{1}{2}×2×2×\sqrt{3}$-$\frac{1}{3}×\frac{1}{2}×2×2×\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{3}$.
△EBD中,ED=2,BD=2$\sqrt{2}$,EB=2$\sqrt{2}$,
∴S△EBD=$\frac{1}{2}×2×\sqrt{8-1}$=$\sqrt{7}$,
设P到平面EBD的距离为h,则$\frac{1}{3}×\sqrt{7}×h$=$\frac{\sqrt{3}}{3}$,
∴h=$\frac{\sqrt{21}}{7}$.

点评 本题考查线面平行的判定,考查三棱锥的体积公式,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x|x+a|-$\frac{1}{2}$lnx.
(1)若a=0时,讨论函数f(x)的单调性;
(2)求函数f(x)的极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知,如图所示,在梯形ABCD中,AD∥BC∥EF,对角线DB与AC交于点O,与EF分别交于点H、G,求证:EH=GF.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知长方体ABCD-A1B1C1D1底面为正方形,则平面ACB1与平面DBB1D1所成的二面角大小为90°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设P是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)上一点,F1(-c,0),F2(c,0)(c>0)为左、右焦点,△PF1F2周长为6c,面积为$\frac{2\sqrt{3}}{3}$a2,则双曲线的离心率是(  )
A.$\frac{2\sqrt{3}}{3}$B.2$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.高一•三班有男同学27名,女同学21名,在一次语文测验中,男同学的平均分是82分,中位数是75分,女同学的平均分是80分,中位数是80分.
(1)求这次测验全班平均分(精确到0.01);
(2)估计全班成绩在80分以下(含80分)的同学至少有多少人?
(3)分析男同学的平均分与中位数相差较大的主要原因是什么?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x${e}^{{x}^{2}-ax}$,x∈(0,+∞),其中e=2.71828…是自然对数的底数,a∈R.
(1)若a=3,求函数f(x)的极值;
(2)设g(x)=ln[$\frac{1}{{x}^{2}}$f(x)],若g(x)在[1,+∞)单调递增,求a的范围;
(3)求证:当n∈N,n>1时,$\frac{1}{ln2}$+$\frac{1}{ln3}$+$\frac{1}{ln4}$+…+$\frac{1}{lnn}$>$\frac{n-1}{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知α∈($\frac{3}{2}$π,2π),求$\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cos2α}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.等比数列{an}中,a2=2,a5=$\frac{1}{4}$,则公比q=(  )
A.-$\frac{1}{2}$B.-2C.2D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案