精英家教网 > 高中数学 > 题目详情

(14分)在数列中,,数列的前n项和满足

(Ⅰ)求

(Ⅱ)求

  (Ⅲ)若,求

解析:(Ⅰ)令n=1有,,∴,∴.

(Ⅱ)∵……① ∴当时,有……②

①-②有

将以上各式左右两端分别相乘,得,∴

n=1,2时也成立,∴.

(Ⅲ),当时,

时,

时,

时,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(理)在数列{an}中,a1=6,且对任意大于1的正整数n,点(
an
an-1
)在直线x-y=
6
上,则数列{
a n
n3(n+1)
}的前n项和Sn=
6n
n+1
6n
n+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{bn},若存在正整数T,对一切n∈N*都有bn+r=bn,则称数列{bn}为周期数列,T是它的一个周期.例如:
数列a,a,a,a,…①可看作周期为1的数列;
数列a,b,a,b,…②可看作周期为2的数列;
数列a,b,c,a,b,c,…③可看作周期为3的数列…
(1)对于数列②,它的一个通项公式可以是数学公式,试再写出该数列的一个通项公式;
(2)求数列③的前n项和Sn
(3)在数列③中,若a=2,b=数学公式,c=-1,且它有一个形如bn=Asin(ωn+φ)+B的通项公式,其中A、B、ω、φ均为实数,A>0,ω>0,|φ|<数学公式,求该数列的一个通项公式bn

查看答案和解析>>

科目:高中数学 来源:2012年上海市卢湾区高考数学一模试卷(理科)(解析版) 题型:解答题

已知数列{bn},若存在正整数T,对一切n∈N*都有bn+r=bn,则称数列{bn}为周期数列,T是它的一个周期.例如:
数列a,a,a,a,…①可看作周期为1的数列;
数列a,b,a,b,…②可看作周期为2的数列;
数列a,b,c,a,b,c,…③可看作周期为3的数列…
(1)对于数列②,它的一个通项公式可以是,试再写出该数列的一个通项公式;
(2)求数列③的前n项和Sn
(3)在数列③中,若a=2,b=,c=-1,且它有一个形如bn=Asin(ωn+φ)+B的通项公式,其中A、B、ω、φ均为实数,A>0,ω>0,|φ|<,求该数列的一个通项公式bn

查看答案和解析>>

科目:高中数学 来源:2012年上海市卢湾区高考数学一模试卷(文科)(解析版) 题型:解答题

已知数列{bn},若存在正整数T,对一切n∈N*都有bn+r=bn,则称数列{bn}为周期数列,T是它的一个周期.例如:
数列a,a,a,a,…①可看作周期为1的数列;
数列a,b,a,b,…②可看作周期为2的数列;
数列a,b,c,a,b,c,…③可看作周期为3的数列…
(1)对于数列②,它的一个通项公式可以是,试再写出该数列的一个通项公式;
(2)求数列③的前n项和Sn
(3)在数列③中,若a=2,b=,c=-1,且它有一个形如bn=Asin(ωn+φ)+B的通项公式,其中A、B、ω、φ均为实数,A>0,ω>0,|φ|<,求该数列的一个通项公式bn

查看答案和解析>>

同步练习册答案