精英家教网 > 高中数学 > 题目详情
a
b
c
是任意的非零平面向量,且互不平行,则下列四个命题中的真命题是(  )
(
a
b
)
c
-(
c
a
)
b
=
0
;             ②|
a
|-|
b
|<|
a
-
b
|

(
b
c
)
a
-(
c
a
)
b
c
垂直;         ④λ
a
b
=
0
?λ=0,μ=0(λ,μ为实数).
分析:由题意知①中研究向量的数量积与数乘运算,根据运算规则判断,②中研究向量差的模与模的差的关系,根据其几何意义判断,③中研究向量的垂直关系,根据数量积为0验证,④中是平面向量基本定理的考查,根据平面向量基本定理判断.
解答:解:∵
c
(
a
b
)
c
共线,
b
(
c
a
)
b
共线,由题设条件知:
b
c
不共线的任意的非零向量,知①不正确,
由向量的减法法则知,两向量差的模一定大于两向量模的差,故②正确,
因为[(
b
c
)
a
-(
c
a
)
b
]•
c
=0,
(
b
c
)
a
-(
c
a
)
b
c
垂直,所以命题③正确;
根据平面向量基本定理得:λ
a
b
=
0
?λ=0,μ=0(λ,μ为实数),故④正确.
综上知②③④是正确命题
故选B.
点评:本题考查数量积的运算,数乘向量的运算,解题的关键是理解向量数量积运算及其几何意义,理解数量积为0对应的几何意义是两向量垂直.本题的选项设置不合理,其实只要能判断①不正确,就可得出正确答案.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

a
b
c
是任意的非零平面向量,且相互不共线,则
(
a
b
)•
c
-(
c
a
)•
b
=
0

|
a
|-|
b
|<|
a
-
b
|

(
b
c
)
a
-(
c
a
)
b
不与
c
垂直;
(3
a
+2
b
)•(3
a
-2
b
)
=9|
a
|2-4|
b
|2
中是真命题的有
 

查看答案和解析>>

科目:高中数学 来源: 题型:

a
b
c
是任意的非零平面向量且互不共线,以下四个命题:
(
a
b
)•
c
-(
c
a
)•
b
=
0

|
a
|+|
b
|>|
a
+
b
|

(
b
c
)•
a
-(
c
a
)•
b
c
垂直

④两单位向量
e1
e2
平行,则
e1
e2
=1

⑤将函数y=2x的图象按向量
a
平移后得到y=2x+6的图象,
a
的坐标可以有无数种情况.
其中正确命题是
②③⑤
②③⑤
(填上正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

a
b
c
是任意的非零平面向量,且相互不共线,则
(
a•
b
)
c
-(
c
a
)
b
=0

|
a
|-|
b
|<|
a
-
b
|

(
b
c
)
a
-(
c
a
)
b
不与
c
垂直         
(3
a
+2
b
)(3
a
-2
b
)=9|
a
|2-4|
b
|2
中,是真命题的有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

a
b
c
是任意的非零向量,且相互不共线,给定下列结论
①(
a
b
)•
c
-(
c
a
)•
b
=
0
   
②|
a
|-|
b
|<|
a
-
b
|
③(
b
c
)•
a
-(
c
a
)•
b
不与
c
垂直
④(3
a
+2
b
)•(3
a
-2
b
)=9
a2
-4
b2

其中正确的叙述有
②④
②④

查看答案和解析>>

科目:高中数学 来源: 题型:

a
b
c
是任意的非零向量,且相互不共线,有下列命题:
(1)(
a
b
c
-(
c
a
b
=0;
(2)|
a
|-|
b
|<|
a
-
b
|;
(3)(
b
c
a
-(
a
c
b
不与
c
垂直;
(4)(3
a
+4
b
)•(3
a
-4
b
)=9|
a
|2-16|
b
|2
其中,是真命题的有(  )

查看答案和解析>>

同步练习册答案