精英家教网 > 高中数学 > 题目详情
如图,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BCM为BC的中点
(Ⅰ)证明:AMPM
(Ⅱ)求二面角PAMD的大小;
(Ⅲ)求点D到平面AMP的距离
(Ⅰ)证明见解析(Ⅱ)45°(Ⅲ)
(Ⅰ) 取CD的中点E,连结PE、EM、EA.
∵△PCD为正三角形,∴PE⊥CD,PE=PDsin∠PDE=2sin60°=
∵平面PCD⊥平面ABCD, ∴PE⊥平面ABCD          (2分)
∵四边形ABCD是矩形
∴△ADE、△ECM、△ABM均为直角三角形
由勾股定理可求得:EM=,AM=,AE=3
                          (4分)
,又在平面ABCD上射影:
∴∠AME=90°,      ∴AM⊥PM                  (6分)
(Ⅱ)由(Ⅰ)可知EM⊥AM,PM⊥AM
∴∠PME是二面角P-AM-D的平面角           (8分)
∴tan ∠PME=
∴∠PME=45°
∴二面角P-AM-D为45°;                   (10分)
(Ⅲ)设D点到平面PAM的距离为,连结DM,则
 ,   ∴
                         (12分)
中,由勾股定理可求得PM=
,所以:
即点D到平面PAM的距离为                       (14分)
解法2:(Ⅰ) 以D点为原点,分别以直线DA、DC为x轴、y轴,建立如图所示的空间直角坐标系,
依题意,可得
    ……2分

     (4分)
 
,∴AM⊥PM             (6分)
(Ⅱ)设,且平面PAM,则
  即
 ,   
,得                    (8分)
,显然平面ABCD,   ∴
结合图形可知,二面角P-AM-D为45°;    (10分)
(Ⅲ) 设点D到平面PAM的距离为,由(Ⅱ)可知与平面PAM垂直,则
=
即点D到平面PAM的距离为              (14分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
(注意:在试题卷上作答无效)
四棱锥中,底面为矩形,侧面底面
(Ⅰ)证明:
(Ⅱ)设与平面所成的角为,求二面角的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图直棱柱ABC-A1B1C1中AB=,AC=3,BC=,D是A1C的中点E是侧棱BB1上的一动点。
(1)当E是BB1的中点时,证明:DE//平面A1B1C1
(2)求的值
(3)在棱 BB1上是否存在点E,使二面角E-A1C-C是直二面角?若存在求的值,不存在则说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四棱锥P-ABCD,底面是边长为1的正方形,侧棱PC长为2,且PC⊥底面ABCD,E是侧棱PC上的动点。
(Ⅰ)不论点E在何位置,是否都有BD⊥AE?证明你的结论;
(Ⅱ)求点C到平面PDB的距离;
(Ⅲ)若点E为PC的中点,求二面角D-AE-B的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在正三棱柱ABCA1B1C1中,点D在边BC上,ADC1D
(1)求证:AD⊥平面BC C1 B1
(2)设EB1C1上的一点,当的值为多少时,
A1E∥平面ADC1?请给出证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知三棱柱ABC-A1B1C1的所有棱长都相等,且侧棱垂直于底面,由
B沿棱柱侧面经过棱C C1到点A1的最短路线长为,设这条最短路线与CC1的交
点为D.
(1)求三棱柱ABC-A1B1C1的体积;
(2)在平面A1BD内是否存在过点D的直线与平面ABC平行?证明你的判断;
(3)证明:平面A1BD⊥平面A1ABB1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,圆锥中,为底面圆的两条直径,,且的中点.
(1)求圆锥的表面积;
(2)求异面直线所成角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直三棱柱ABC—A1B1C1中,CA=CB=CC1=2,∠ACB=90°,E、F分别是BA、BC的中点,G是AA1上一点,且AC1⊥EG.
(Ⅰ)确定点G的位置;
(Ⅱ)求直线AC1与平面EFG所成角θ的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直角梯形ABCD中,AD∥BC,AB⊥AD,∠C=45°,AD=AB=2,把梯形沿BD折起成60°的二面角C′-BD-A.求:  (1)C′到平面ADB的距离;
(2)AC′与BD所成的角.

查看答案和解析>>

同步练习册答案