精英家教网 > 高中数学 > 题目详情
3.已知复数z满足$\frac{z}{z+3i}$=1+4i,则复数z的虚部为(  )
A.-3B.11C.11iD.-11

分析 由复数z满足$\frac{z}{z+3i}$=1+4i,得$z=\frac{12-3i}{4i}$,再利用复数代数形式的乘除运算化简复数z,则答案可求.

解答 解:由复数z满足$\frac{z}{z+3i}$=1+4i,
得$z=\frac{12-3i}{4i}=\frac{-4i(12-3i)}{-4i•4i}=\frac{-3-12i}{4}$=$-\frac{3}{4}-3i$,
则复数z的虚部为:-3.
故选:A.

点评 本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.设f(x)为R上的奇函数,且当x>0时,f(x)=x3-1,则f(1-x)>0的解集为(  )
A.(-∞,0)∪(1,2)B.(-1,0)∪(1,+∞)C.(0,1)∪(2,+∞)D.(-∞,-1)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数y=x2-x-1在[-1,1]上的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=tan($\frac{x}{2}-\frac{π}{3}$)
(1)求函数f(x)的定义域、最小正周期、单调区间及对称中心.
(2)求不等式-1≤f(x)≤$\sqrt{3}$的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知集合A={x|x2-ax+a2-12=0},B={x|x2-2x-8=0},C={x|mx+1=0}.
(Ⅰ)若A=B,求a的值;       
(Ⅱ)若B∪C=B,求实数m的值组成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知i是虚数单位,若z=i(-1+2i),则z的实部与虚部分别为(  )
A.-1,-2B.-1,-2iC.-2,-1D.-2,-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={1,2,3,4},B={2,4,6},则A∩B的元素个数(  )
A.0个B.2个C.3个D.5个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知A={x|a1x2+b1x+c1>0(a1,b1,c1∈R,a1b1c1≠0)},B={x|a2x2+b2x+c2>0(a2,b2,c2∈R,a2b2c2≠0)},则A=B是$\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}$成立的(  )
A.充分不必要条件B.必要不充分条件
C.既不充分也不必要条件D.充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)是偶函数,当x>0时,f(x)=$\frac{a{x}^{2}}{x+1}$.若曲线y=f(x)在点(-1,f(-1))处切线的斜率为-1,则实数a的值为(  )
A.-$\frac{3}{4}$B.$\frac{4}{3}$C.$\frac{3}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

同步练习册答案