精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的焦距为,点在椭圆上,且的最小值是为坐标原点).

1)求椭圆的标准方程.

2)已知动直线与圆相切,且与椭圆交于两点.是否存在实数,使得?若存在,求出的值;若不存在,请说明理由.

【答案】1;(2)存在

【解析】

1)根据焦距和椭圆的几何意义即可求出椭圆标准方程;

2)分别对斜率不存在和斜率存在两种情况讨论,相切即圆心到直线距离等于半径,即向量的数量积为零,进行代数运算即可求解.

1)因为的最小值是,所以

因为椭圆的焦距为,所以,即

所以

故椭圆的标准方程是

2)①当直线的斜率不存在时,

因为直线与圆相切,所以直线的方程为

则直线与椭圆的交点为

因为,所以,所以,即

②当直线的斜率存在时,可设直线的方程为.

联立,整理得

因为在直线上,所以

代入上式,得

因为,所以,即

因为动直线与圆相切,所以,所以,即

综上,存在,使得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的方程为,圆轴相切于点,与轴正半轴相交于两点,且,如图1.

1)求圆的方程;

2)如图1,过点的直线与椭圆相交于两点,求证:射线平分

3)如图2所示,点是椭圆的两个顶点,且第三象限的动点在椭圆上,若直线轴交于点,直线轴交于点,试问:四边形的面积是否为定值?若是,请求出这个定值,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示多面体,其底面为矩形且,四边形为平行四边形,点在底面内的投影恰好是的中点.

(1)已知为线段的中点,证明:平面

(2)若二面角大小为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了解某产品的获利情况,将今年17月份的销售收入(单位:万元)与纯利润(单位:万元)的数据进行整理后,得到如下表格:

月份

1

2

3

4

5

6

7

销售收入

13

13.5

13.8

14

14.2

14.5

15

纯利润

3.2

3.8

4

4.2

4.5

5

5.5

该公司先从这7组数据中选取5组数据求纯利润关于销售收入的线性回归方程,再用剩下的2组数据进行检验.假设选取的是2月至6月的数据.

1)求纯利润关于销售收入的线性回归方程(精确到0.01);

2)若由线性回归方程得到的估计数据与检验数据的误差均不超过0.1万元,则认为得到的线性回归方程是理想的.试问该公司所得线性回归方程是否理想?

参考公式:;参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】众所周知,城市公交车的数量太多会造成资源的浪费,太少又难以满足乘客的需求,为此,某市公交公司在某站台的50名候车乘客中随机抽取10名,统计了他们的候车时间(单位:分钟),得到下表.

候车时间

人数

1

4

2

2

1

1)估计这10名乘客的平均候车时间(同一组中的每个数据可用该组区间的中点值代替);

2)估计这50名乘客的候车时间少于10分钟的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的倾斜角为,且经过点.以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,直线,从原点O作射线交于点M,点N为射线OM上的点,满足,记点N的轨迹为曲线C.

(Ⅰ)求出直线的参数方程和曲线C的直角坐标方程;

(Ⅱ)设直线与曲线C交于P,Q两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦点长轴长.

1)设直线交椭圆两点,求线段的中点坐标.

2)求过点的直线被椭圆所截弦的中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P-ABCD的底面ABCD为正方形,EF分别是棱PCAB的中点.

1)求证:平面PAD

2)若,求直线EF与平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于方程为的曲线给出以下三个命题:

1)曲线关于原点对称;(2)曲线关于轴对称,也关于轴对称,且轴和轴是曲线仅有的两条对称轴;(3)若分别在第一、第二、第三、第四象限的点,都在曲线上,则四边形每一条边的边长都大于2

其中正确的命题是(

A.1)(2B.1)(3C.2)(3D.1)(2)(3

查看答案和解析>>

同步练习册答案