如图,已知抛物线的焦点在抛物线
上.
(1)求抛物线的方程及其准线方程;
(2)过抛物线上的动点
作抛物线
的两条切线
、
, 切点为
、
.若
、
的斜率乘积为
,且
,求
的取值范围.
科目:高中数学 来源: 题型:解答题
在直接坐标系中,直线
的方程为
,曲线
的参数方程为
(
为参数).
(I)已知在极坐标(与直角坐标系取相同的长度单位,且以原点
为极点,以
轴正半轴为极轴)中,点
的极坐标为(4,
),判断点
与直线
的位置关系;
(II)设点是曲线
上的一个动点,求它到直线
的距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
椭圆的离心率为
,两焦点分别为
,点M是椭圆C上一点,
的周长为16,设线段MO(O为坐标原点)与圆
交于点N,且线段MN长度的最小值为
.
(1)求椭圆C以及圆O的方程;
(2)当点在椭圆C上运动时,判断直线
与圆O的位置关系.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点B(0,1),点C(0,—3),直线PB、PC都是圆的切线(P点不在y轴上).
(I)求过点P且焦点在x轴上抛物线的标准方程;
(II)过点(1,0)作直线与(I)中的抛物线相交于M、N两点,问是否存在定点R,使
为常数?若存在,求出点R的坐标与常数;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆:
的离心率为
,以原点为圆心,椭圆的短半轴长为半径的圆与直线
相切.
(1)求椭圆C的方程;
(2)设,
、
是椭圆
上关于
轴对称的任意两个不同的点,连结
交椭圆
于另一点
,求直线
的斜率的取值范围;
(3)在(2)的条件下,证明直线与
轴相交于定点.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在极坐标系内,已知曲线的方程为
,以极点为原点,极轴方向为
正半轴方向,利用相同单位长度建立平面直角坐标系,曲线
的参数方程为
(
为参数).
(1)求曲线的直角坐标方程以及曲线
的普通方程;
(2)设点为曲线
上的动点,过点
作曲线
的两条切线,求这两条切线所成角余弦值的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的中心在原点,焦点在
轴上.若椭圆上的点
到焦点
、
的距离之和等于4.
(1)写出椭圆的方程和焦点坐标.
(2)过点的直线与椭圆交于两点
、
,当
的面积取得最大值时,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
平面内与两定点连线的斜率之积等于非零常数
的点的轨迹,加上
两点,所成的曲线
可以是圆,椭圆或双曲线.
(Ⅰ)求曲线的方程,并讨论
的形状与
值的关系;
(Ⅱ)当时,对应的曲线为
;对给定的
,对应的曲线为
,若曲线
的斜率为
的切线与曲线
相交于
两点,且
(
为坐标原点),求曲线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆的左、右焦点分别为
,
上顶点为,在
轴负半轴上有一点
,满足
,且
.
(Ⅰ)求椭圆的离心率;
(Ⅱ)是过
三点的圆上的点,
到直线
的最大距离等于椭圆长轴的长,求椭圆
的方程;
(Ⅲ)在(Ⅱ)的条件下,过右焦点作斜率为
的直线
与椭圆
交于
两点,线段
的中垂线与
轴相交于点
,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com