精英家教网 > 高中数学 > 题目详情
17、四棱锥P-ABCD底面为正方形,侧面PAD为等边三角形,且侧面PAD⊥底面ABCD,点M在底面正方形ABCD内运动,且满足MP=MC,则点M在正方形ABCD内的轨迹一定是(  )
分析:先确定轨迹是2个平面的交线,PC的中垂面α和正方形ABCD的交线,再确定交线的准确位置,即找到交线上的2个固定点.
解答:解:∵MP=MC,
∴M在PC的中垂面α上,点M在正方形ABCD内的轨迹一定是平面α和正方形ABCD的交线,
∵ABCD为正方形,侧面PAD为等边三角形,
∴PD=CD,取PC的中点N,有DN⊥PC,
取AB中点H,可证 CH=HP,
∴HN⊥PC,
∴点M在正方形ABCD内的轨迹一定是HD.
故答案选  B.
点评:本题考查面面垂直的性质,轨迹的确定方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,正四棱锥P-ABCD底面的四个顶点A、B、C、D在球O的同一个大圆上,点P在球面上,若VP-ABCD=
163
,则球O的表面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,四棱锥P-ABCD底面是直角梯形,BA⊥AB,CD⊥DA,CD=2AB,PA⊥底面ABCD,E、F分别为PC,PD的中点,PA=AD=AB.
(1)证明:EF∥平面PAB;
(2)证明:平面BEF⊥平面PDC;
(3)求BC与平面PDC所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD底面ABCD是矩形,PA丄平面ABCD,AD=4,AB=2,E,F分别是线段AB和BC的中点.
(1)证明:DF⊥平面PAF
(2)在线段AP上找一点G,使得EG∥平面PFD.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,四棱锥P-ABCD底面是直角梯形,BA⊥AD,CD⊥AD,CD=2AB,PA⊥底面ABCD,E为PC的中点,PA=AD=AB=1.
(1)证明:EB∥平面PAD;
(2)证明:BE⊥平面PDC;
(3)求三棱锥B-PDC的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•上海一模)如图,正四棱锥P-ABCD底面的四个顶点A,B,C,D在球O的同一个大圆上,点P在球面上,且已知VP-ABCD=
163

(1)求球O的表面积;
(2)设M为BC中点,求异面直线AM与PC所成角的大小.

查看答案和解析>>

同步练习册答案