精英家教网 > 高中数学 > 题目详情

【题目】fx)=xexax22ax

(Ⅰ)若yfx)的图象在x=﹣1处的切线经过坐标原点,求a的值;

(Ⅱ)若fx)存在极大值,且极大值小于0,求a的取值范围.

【答案】(Ⅰ)a;(Ⅱ)(0)∪().

【解析】

)求f'x)得到切线斜率,结合直线过原点,即得解;

)分a≤0a0两种情况分析导数极值,得到fln2a)是极大值,由极大值小于0,求a的取值范围.

f'x)=ex+xex2ax2a=(x+1)(ex2a),f'(﹣1)=0f(﹣1a

所以由题意得:0a

)由()得,当2a≤0时,即a≤0时,ex2a≥0

x<﹣1f'x)<0fx)单调递减,

x>﹣1f'x)>0fx)单调递增,

所以fx)有极小值,无极大值;

a0f'x)=0x=﹣1xln2a

ln2a>﹣1时,即a

x(﹣,﹣1)和 ln2a+∞),f'x)>0fx)单调递增,

当﹣1xln2a时,

f'x)<0fx)单调递减,

所以f(﹣1)为极大值,且f(﹣1a,由题意得:f(﹣1)<0

ln2a<﹣1时,即0a

x(﹣ln2a)和 (﹣1+∞),f'x)>0fx)单调递增,

xln2a,﹣1),f'x)<0fx)单调递减,

所以fln2a)是极大值,且fln2a)=2aln2aaln22a2aln2a=﹣aln22a0恒成立;

ln2a=﹣1时,即af'x)=(x+12≥0恒成立,fx)单调递增,无极值,舍去;

综上所述:符合条件的a的取值范围:(0).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知某产品的历史收益率的频率分布直方图如图所示.

(1)试估计该产品收益率的中位数;

(2)若该产品的售价(元)与销量(万份)之间有较强线性相关关系,从历史销售记录中抽样得到如表5组的对应数据:

售价(元)

25

30

38

45

52

销量(万份)

7.5

7.1

6.0

5.6

4.8

根据表中数据算出关于的线性回归方程为,求的值;

(3)若从表中五组销量数据中随机抽取两组,记其中销量超过6万份的组数为,求的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点到定直线的距离比到定点的距离大2.

(1)求动点的轨迹的方程;

(2)在轴正半轴上,是否存在某个确定的点,过该点的动直线与曲线交于两点,使得为定值.如果存在,求出点坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy下,曲线C1的参数方程为 为参数),曲线C1在变换T的作用下变成曲线C2

1)求曲线C2的普通方程;

2)若m>1,求曲线C2与曲线C3y=m|x|-m的公共点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,对于⊙Ox2+y21来说,P是坐标系内任意一点,点P到⊙O的距离SP的定义如下:若PO重合,SPr;若P不与O重合,射线OP与⊙O的交点为ASPAP的长度(如图).

1)直线2x+2y+10在圆内部分的点到⊙O的最长距离为_____

2)若线段MN上存在点T,使得:

①点T在⊙O内;

P∈线段MN,都有STSP成立.则线段MN的最大长度为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列满足:,其中

1)若,求数列的前项的和;

2)若

①求数列的通项公式;

②记数列的前项的和为,若无穷项等比数列始终满足,求数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知{an}是等差数列,其前n项和Snn22n+b1{bn}是等比数列,其前n项和Tn,则数列{ bn +an}的前5项和为(  )

A.37B.-27C.77D.46

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的离心率为,左、右顶点分别为AB,点M是椭圆C上异于AB的一点,直线AMy轴交于点P

(Ⅰ)若点P在椭圆C的内部,求直线AM的斜率的取值范围;

(Ⅱ)设椭圆C的右焦点为F,点Qy轴上,且∠PFQ=90°,求证:AQBM

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为抗击新型冠状病毒,普及防护知识,某校开展了疫情防护网络知识竞赛活动.现从参加该活动的学生中随机抽取了100名学生,将他们的比赛成绩(满分为100分)分为6组:,得到如图所示的频率分布直方图.

1)求的值,并估计这100名学生的平均成绩(同一组中的数据用该组区间的中点值为代表);

2)在抽取的100名学生中,规定:比赛成绩不低于80分为优秀,比赛成绩低于80分为非优秀”.请将下面的2×2列联表补充完整,并判断是否有99%的把握认为比赛成绩是否优秀与性别有关

优秀

非优秀

合计

男生

40

女生

50

合计

100

参考公式及数据:.

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

同步练习册答案