精英家教网 > 高中数学 > 题目详情

的斜边中点,若,则的值是

(A)1       (B)2          (C) -1          (D) -2

 

【答案】

D

【解析】解:因为设的斜边中点,若,则,选D

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•四川)设P1,P2,…Pn为平面α内的n个点,在平面α内的所有点中,若点P到点P1,P2,…Pn的距离之和最小,则称点P为P1,P2,…Pn的一个“中位点”,例如,线段AB上的任意点都是端点A,B的中位点,现有下列命题:
①若三个点A、B、C共线,C在线段AB上,则C是A,B,C的中位点;
②直角三角形斜边的中点是该直角三角形三个顶点的中位点;
③若四个点A、B、C、D共线,则它们的中位点存在且唯一;
④梯形对角线的交点是该梯形四个顶点的唯一中位点.
其中的真命题是
①④
①④
(写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源:2013年全国普通高等学校招生统一考试理科数学(四川卷解析版) 题型:填空题

(5分)设P1,P2,…Pn为平面α内的n个点,在平面α内的所有点中,若点P到点P1,P2,…Pn的距离之和最小,则称点P为P1,P2,…Pn的一个“中位点”,例如,线段AB上的任意点都是端点A,B的中位点,现有下列命题:

①若三个点A、B、C共线,C在线段AB上,则C是A,B,C的中位点;

②直角三角形斜边的中点是该直角三角形三个顶点的中位点;

③若四个点A、B、C、D共线,则它们的中位点存在且唯一;

④梯形对角线的交点是该梯形四个顶点的唯一中位点.

其中的真命题是    (写出所有真命题的序号).

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省菏泽市高三5月高考冲刺题理科数学试卷(解析版) 题型:解答题

已知函数的图象过坐标原点O,且在点处的切线的斜率是.

(Ⅰ)求实数的值; 

(Ⅱ)求在区间上的最大值;

(Ⅲ)对任意给定的正实数,曲线上是否存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由.

【解析】第一问当时,,则

依题意得:,即    解得

第二问当时,,令,结合导数和函数之间的关系得到单调性的判定,得到极值和最值

第三问假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

(Ⅰ)当时,,则

依题意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①当时,,令

变化时,的变化情况如下表:

0

0

+

0

单调递减

极小值

单调递增

极大值

单调递减

。∴上的最大值为2.

②当时, .当时, ,最大值为0;

时, 上单调递增。∴最大值为

综上,当时,即时,在区间上的最大值为2;

时,即时,在区间上的最大值为

(Ⅲ)假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

,则代入(*)式得:

,而此方程无解,因此。此时

代入(*)式得:    即   (**)

 ,则

上单调递增,  ∵     ∴,∴的取值范围是

∴对于,方程(**)总有解,即方程(*)总有解。

因此,对任意给定的正实数,曲线上存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上

 

查看答案和解析>>

科目:高中数学 来源:2013年四川省高考数学试卷(理科)(解析版) 题型:填空题

设P1,P2,…Pn为平面α内的n个点,在平面α内的所有点中,若点P到点P1,P2,…Pn的距离之和最小,则称点P为P1,P2,…Pn的一个“中位点”,例如,线段AB上的任意点都是端点A,B的中位点,现有下列命题:
①若三个点A、B、C共线,C在线段AB上,则C是A,B,C的中位点;
②直角三角形斜边的中点是该直角三角形三个顶点的中位点;
③若四个点A、B、C、D共线,则它们的中位点存在且唯一;
④梯形对角线的交点是该梯形四个顶点的唯一中位点.
其中的真命题是    (写出所有真命题的序号).

查看答案和解析>>

同步练习册答案