精英家教网 > 高中数学 > 题目详情

是实数,
(1)试确定的值,使成立;
(2)求证:不论为何实数,均为增函数

(1)1;(2)证明见试题解析

解析试题分析:(1)成立,可以直接代入的表达式,解出,即可,也可以由成立,得为奇函数,从而,由此也可很快求出 (2)要根据增函数的定义证明,设,由此证明出,为了此目的,作差,证明 
试题解析:(1)由题知,则有
,故的值为1      8分
另解:由成立,得为奇函数,从而,即
(2)证明:由题意知,在上任取两个值,则

,且为R上的增函数得
,即,故不论为何实数,均为增函数     16分
考点:(1)函数的解析式或奇函数的定义;(2)增函数

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量(单位:微克)与时间(单位:小时)之间近似满足如图所示的曲线.

(Ⅰ)写出第一次服药后之间的函数关系式
(Ⅱ)据进一步测定:每毫升血液中含药量不少于微克时,治疗有效.问:服药多少小时开始有治疗效果?治疗效果能持续多少小时?(精确到0.1)(参考数据:).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,指出的单调递减区间和奇偶性(不需说明理由);
(2)当时,求函数的零点;
(3)若对任何不等式恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知在区间上是增函数.
(1)求实数的值组成的集合
(2)设关于的方程的两个非零实根为.试问:是否存在实数,使得不等式对任意 恒成立?若存在,求的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

湖南省环保研究所对长沙市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数与时刻x的关系为,其中a是与气象有关的参数,且,若用每天的最大值作为当天的综合放射性污染指数,并记作.
(Ⅰ)令,求t的取值范围;
(Ⅱ)省政府规定,每天的综合放射性污染指数不得超过2,试问目前市中心的综合放射性污染指数是否超标?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

上最大值是5,最小值是2,若,在上是单调函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数的最小值为,且关于的一元二次不等式的解集为
(Ⅰ)求函数的解析式;
(Ⅱ)设其中,求函数时的最大值
(Ⅲ)若为实数),对任意,总存在使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,判断函数上的单调性并用定义证明;
(2)若函数上是增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(a,b均为正常数).
(1)求证:函数内至少有一个零点;
(2)设函数在处有极值,
①对于一切,不等式恒成立,求的取值范围;
②若函数f(x)在区间上是单调增函数,求实数的取值范围.

查看答案和解析>>

同步练习册答案