精英家教网 > 高中数学 > 题目详情
已知圆M:(x+
5
)2+y2=36
,定点N(
5
,0)
,点P为圆M上的动点,点Q在NP上,点G在MP上,且满足
NP
=2
NQ
GQ
NP
=0

(I)求点G的轨迹C的方程;
(II)过点(2,0)作直线l,与曲线C交于A、B两点,O是坐标原点,设
OS
=
OA
+
OB
,是否存在这样的直线l,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,求出直线l的方程;若不存在,试说明理由.
(I)
NP
=2
NQ
GQ
PN
=0
?
Q为PN的中点且GQ⊥PN?GQ为PN的中垂线?|PG|=|GN|
∴|GN|+|GM|=|MP|=6,故G点的轨迹是以M、N为焦点的椭圆,其长半轴长a=3,半焦距c=
5

∴短半轴长b=2,∴点G的轨迹方程是
x2
9
+
y2
4
=1
(5分)
(II)因为
OS
=
OA
+
OB
,所以四边形OASB为平行四边形
若存在l使得|
OS
|=|
AB
|,则四边形OASB为矩形∴
OA
OB
=0

若l的斜率不存在,直线l的方程为x=2,
x=2
x2
9
+
y2
4
=1
x=2
y=±
2
5
3
OA
OB
=
16
9
>0
,与
OA
OB
=0
矛盾,
故l的斜率存在.(7分)
设l的方程为y=k(x-2),A(x1,y1),B(x2,y2
y=k(x-2)
x2
9
+
y2
4
=1
?(9k2+4)x2-36k2x+36(k2-1)=0

x1+x2=
36k2
9k2+4
x1x2=
36(k2-1)
9k2+4

y1y2=[k(x1-2)][k(x2-2)]=k2[x1x2-2(x1+x2)+4]=-
20k2
9k2+4
②(9分)
把①、②代入x1x2+y1y2=0得k=±
3
2

∴存在直线l:3x-2y-6=0或3x+2y-6=0使得四边形OASB的对角线相等.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆M:(x+
5
)2+y2=36
,定点N(
5
,0)
,点P为圆M上的动点,点Q在NP上,点G在MP上,且满足
NP
=2
NQ
GQ
NP
=0

(I)求点G的轨迹C的方程;
(II)过点(2,0)作直线l,与曲线C交于A、B两点,O是坐标原点,设
OS
=
OA
+
OB
,是否存在这样的直线l,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,求出直线l的方程;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•湖北模拟)已知圆M的圆心M在x轴上,半径为1,直线l:y=
4
3
x-
1
2
,被圆M所截的弦长为
3
,且圆心M在直线l的下方.
(I)求圆M的方程;
(II)设A(0,t),B(0,t+6)(-5≤t≤-2),若圆M是△ABC的内切圆,求△ABC的面积S的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆M:x2+(y-2)2=1,设点B,C是直线l:x-2y=0上的两点,它们的横坐标分别是t,t+4(t∈R),P点的纵坐标为a且点P在线段BC上,过P点作圆M的切线PA,切点为A
(1)若t=0,MP=
5
,求直线PA的方程;
(2)经过A,P,M三点的圆的圆心是D,
①将DO2表示成a的函数f(a),并写出定义域.
②求线段DO长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆M:(x+
5
)2+y2=36
,定点N(
5
,0),点P为圆M上的动点,点Q在NP上,点G在MP上,且满足
NP
=2
NQ
GQ
NP
=0

(1)求点G的轨迹C的方程;
(2)过点(2,0)作斜率为k的直线l,与曲线C交于A,B两点,O是坐标原点,是否存在这样的直线l,使得
OA
OB
≤-1?若存在,求出直线l的斜率k的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案