精英家教网 > 高中数学 > 题目详情
7.已知函数$f(x)=x+\frac{p}{x-1}$(p为常数,且p>0),若f(x)在(1,+∞)上的最小值为4,则实数p的值为(  )
A.2B.$\frac{9}{4}$C.4D.$\frac{9}{2}$

分析 由x-1>0,f(x)即为(x-1)+$\frac{p}{x-1}$+1,运用基本不等式可得最小值,解方程可得p的值.

解答 解:由x>1可得x-1>0,即有f(x)=(x-1)+$\frac{p}{x-1}$+1
≥2$\sqrt{(x-1)•\frac{p}{x-1}}$+1=2$\sqrt{p}$+1,
当且仅当x-1=$\frac{p}{x-1}$,即x=1+$\sqrt{p}$处取得最小值,且为1+2$\sqrt{p}$,
由题意可得1+2$\sqrt{p}$=4,解得p=$\frac{9}{4}$.
故选:B.

点评 本题考查函数的最值的求法,注意运用基本不等式,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.用诱导公式求下列三角函数值(可用计算器):
(1)cos$\frac{65}{6}$π;             
(2)sin(-$\frac{31}{4}π$);           
(3)cos(-1182°13′);
(4)sin670°39′;         
(5)tan(-$\frac{26π}{3}$);           
(6)tan580°21′.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知全集U=R,A={x|x≥1},B={x|2ax-5>0},
(1)若a=1,求A∩(∁UB).
(2)若A⊆B,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.给定函数①$y={x^{\frac{1}{2}}}$,②$y=x+\frac{1}{x}$,③y=|x-1|,④y=2x+1,其中在区间(0,1)上单调递减的函数序号是(  )
A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知$f(x)=\left\{\begin{array}{l}(2a-1)x+3a,x≤1\\{log_a}x,x>1\end{array}\right.$是(-∞,+∞)上的减函数,那么a的取值范围是$[\frac{1}{5},\frac{1}{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求下列各式的值:
(1)2$\sqrt{3}×\root{3}{{3\frac{3}{8}}}-\sqrt{12}$
(2)(log25+log4125)•$\frac{{{{log}_3}2}}{{{{log}_{\sqrt{3}}}5}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知各项不为0的等差数列{an}满足a4-2a72+3a8=0,数列{bn}是等比数列,且b7=a7,则b2b8b11等于8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.对于实数m,m>0,存在函数f(x)=ax2(a>0)图象上两点A、B,点A、B横坐标分别为1、m,使得$\overrightarrow{OA}$=λ(|$\overrightarrow{OB}$|$\overrightarrow{OC}$+|$\overrightarrow{OC}$|$\overrightarrow{OB}$)(λ为常数),其中点C(c,0)(c>0),则实数m的取值范围为(  )
A.(1,+∞)B.($\sqrt{2}$,+∞)C.(2,+∞)D.(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知条件p:x≥y≥0,条件q:$\sqrt{x}≥\sqrt{y}$,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案