精英家教网 > 高中数学 > 题目详情

【题目】如图统计了截止2019年年底中国电动车充电桩细分产品占比及保有量情况,关于这5次统计,下列说法正确的是( )

中国电动车充电桩细分产品占比情况:

中国电动车充电桩细分产品保有量情况:(单位:万台)

A.私人类电动汽车充电桩保有量增长率最高的年份是2018

B.公共类电动汽车充电桩保有量的中位数是25.7万台

C.公共类电动汽车充电桩保有量的平均数为23.12万台

D.2017年开始,我国私人类电动汽车充电桩占比均超过

【答案】D

【解析】

观察两幅图,对照各项中的结论判断即可.

观察统计图,

对于选项A,注意增长率与增量的区别,由增长率公式,可计算2016年至2019年各年私人类电动汽车充电桩保有量增长率,分别为,因此最高的年份应为2016年,A错误;

对于选项B,由中位数的定义,可得公共类电动汽车充电桩保有量的中位数是21.4万台,B错误;

对于选项C,由平均数的定义,可得公共类电动汽车充电桩保有量的平均数为23.02万台,C错误;

对于选项D,根据第一幅统计图,可知从2017年开始,我国私人类电动汽车充电桩占比均超过D正确.

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】椭圆)的离心率是,点在短轴上,且

(1)球椭圆的方程;

(2)设为坐标原点,过点的动直线与椭圆交于两点。是否存在常数,使得为定值?若存在,求的值;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,abc分别为内角ABC的对边,且(2bccosAacosC

1)求A

2)若△ABC的面积为,求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,底面ABCD为直角梯形,ADBC,∠ADC90°,平面PAD⊥底面ABCDQAD的中点,PAPDAD2BC1.

1)求证:平面PQB⊥平面PAD

2)若M是棱PC上的一点,且满足,求二面角MBQC的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知m,n为两条不同的直线,为两个不同的平面,则下列命题中正确的有  

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的离心率为,且经过点.

1)求椭圆的标准方程;

2)设直线与椭圆两点,是坐标原点,分别过点的平行线,两平行线的交点刚好在椭圆上,判断是否为定值?若为定值,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,过点且斜率为的直线与抛物线相交于两点.设直线是抛物线的切线,且直线上一点,且的最小值为.

1)求抛物线的方程;

2)设是抛物线上,分别位于轴两侧的两个动点,为坐标原点,且.求证:直线必过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据气象部门预报,在距离某个码头A南偏东45°方向的600km处的热带风暴中心B正以30km/h的速度向正北方向移动,距离风暴中心450km以内的地区都将受到影响,从现在起经过___小时后该码头A将受到热带风暴的影响(精确到0.01).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究55岁左右的中国人睡眠质量与心脑血管病是否有关联,某机构在适龄人群中随机抽取了100万个样本,调查了他们每周是否至少三个晚上出现了三种失眠症状,症状:入睡困难;症状:醒得太早;症状:不能深度入睡或做梦,得到的调查数据如下:

数据1:出现症状人数为8.5万,出现症状人数为9.3万,出现症状人数为6.5万,其中含症状同时出现1.8万人,症状同时出现1万人,症状同时出现2万人,症状同时出现0.5万人;

数据2:同时有失眠症状和患心脑血管病的人数为5万人,没有失眠症状且无心脑血管病的人数为73万人.

(Ⅰ)依据上述数据试分析55岁左右的中国人患有失眠症的比例大约多少?

(Ⅱ)根据以上数据完成如下列联表,并根据所填列联表判断能否有95%的把握说明失眠与心脑血管病存在强关联

失眠

不失眠

合计

患心脑血管疾病

不患心脑血管疾病

合计

参考数据如下:

0.50

0.40

0.25

0.15

0.10

0.455

0.708

1.323

2.072

2.706

0.05

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

参考公式:

查看答案和解析>>

同步练习册答案