精英家教网 > 高中数学 > 题目详情
某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是2min.
(Ⅰ)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;    
(Ⅱ)求这名学生在上学路上因遇到红灯停留的总时间的分布列及期望.
(Ⅰ)(Ⅱ)分布列见解析,期望是
(1)由题意知在各路口是否遇到红灯是相互独立的,所以这名学生在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯是相互独立事件同时发生的概率,根据公式得到结果.
(2)由题意知变量的可能取值,根据所给的条件可知本题符合独立重复试验,根据独立重复试验公式得到变量的分布列,算出期望.
(Ⅰ)设这名学生在上学路上到第三个路口时首次遇到红灯为事件A,因为事件A等价于事件“这名学生在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯”,所以事件A的概率为.
(Ⅱ)由题意可得,可能取的值为0,2,4,6,8(单位:min).    
事件“”等价于事件“该学生在路上遇到次红灯”(0,1,2,3,4),
,   
∴即的分布列是

0
2
4
6
8






的期望是.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

甲箱中放有个红球与个白球(,且),乙箱中放有2个红球、1个白球与1个黑球。从甲箱中任取2个球,从乙箱中任取1个球。
(Ⅰ)记取出的3个球颜色全不相同的概率为,求当取得最大值时的的值;
(Ⅱ)当时,求取出的3个球中红球个数的期望

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

口袋里装有7个大小相同小球, 其中三个标有数字1, 两个标有数字2, 一个标有数字3, 一个标有数字4.
(Ⅰ) 第一次从口袋里任意取一球, 放回口袋里后第二次再任意取一球, 记第一次与第二次取到小球上的数字之和为. 当为何值时, 其发生的概率最大? 说明理由;
(Ⅱ) 第一次从口袋里任意取一球, 不再放回口袋里, 第二次再任意取一球, 记第一次与第二次取到小球上的数字之和为. 求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某商场共五层,从五层下到四层有3个出口,从三层下到二层有4个出口,从二层下到一层有4个出口,从一层走出商场有6个出口。安全部门在每层安排了一名警员值班,负责该层的安保工作。假设每名警员到该层各出口处的时间相等,某罪犯在五楼犯案后,欲逃出商场,各警员同时接到指令,选择一个出口进行围堵。逃犯在每层选择出口是等可能的。已知他被三楼警员抓获的概率为
(Ⅰ)问四层下到三层有几个出口?
(Ⅱ)天网恢恢,疏而不漏,犯罪嫌疑人最终落入法网。设抓到逃犯时,他已下了层楼,写出的分布列,并求

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

某商场一号电梯从1层出发后可以在2、3、4层停靠.已知该电梯在1层载有4位乘客,假设每位乘客在2、3、4层下电梯是等可能的.用表示4名乘客在第4层下电梯的人数,则的数学期望为               ,方差为               

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛掷两个骰子,至少有一个4点或5点出现时,就说这次试验成功,则在10次试验中,成功的次数X的期望是(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分)为了丰富学生的课余生活,促进校园文化建设,我校高二年级通过预赛选出了6个班(含甲、乙)进行经典美文颂读比赛决赛.决赛通过随机抽签方式决定出场顺序.
求:(1)甲、乙两班恰好在前两位出场的概率;
(2)决赛中甲、乙两班之间的班级数记为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某车站每天上午发出两班客车(每班客车只有一辆车)。第一班客车在8∶00,8∶20,8∶40这三个时刻随机发出,且在8∶00发出的概率为,8∶20发出的概率为,8∶40发出的概率为;第二班客车在9∶00,9∶20,9∶40这三个时刻随机发出,且在9∶00发出的概率为,9∶20发出的概率为,9∶40发出的概率为.两班客车发出时刻是相互独立的,一位旅客预计8∶10到站.求:
(1)请预测旅客乘到第一班客车的概率;
(2)求旅客候车时间的分布列和数学期望。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某小组有6个同学,其中4个同学从来没有参加过数学研究性学习活动,2个同学曾经参加过数学研究性学习活动.
(I)现从该小组中任选2个同学参加数学研究性学习活动,求恰好选到1个曾经参加过数学研究性学习活动的同学的概率;
(II)若从该小组中任选2个同学参加数学研究性学习活动,活动结束后,该小组没有参加过数学研究性学习活动的同学个数是一个随机变量,求随机变量的分布列及数学期望.

查看答案和解析>>

同步练习册答案