精英家教网 > 高中数学 > 题目详情

【题目】某公司采购了一批零件,为了检测这批零件是否合格,从中随机抽测120个零件的长度(单位:分米),按数据分成6组,得到如图所示的频率分布直方图,其中长度大于或等于1.59分米的零件有20个,其长度分别为1.591.591.611.611.621.631.631.641.651.651.651.651.661.671.681.691.691.711.721.74,以这120个零件在各组的长度的频率估计整批零件在各组长度的概率.

1)求这批零件的长度大于1.60分米的频率,并求频率分布直方图中的值;

2)若从这批零件中随机选取3个,记为抽取的零件长度在的个数,求的分布列和数学期望;

3)若变量满足,则称变量满足近似于正态分布的概率分布.如果这批零件的长度(单位:分米)满足近似于正态分布的概率分布,则认为这批零件是合格的将顺利被签收;否则,公司将拒绝签收.试问,该批零件能否被签收?

【答案】1;(2)分布列见解析,2.1;(3)能被该公司签收.

【解析】

1)根据120件样本零件中长度大于1.60分米的共有18件即可求出频率,根据所给数据分别求出两组的频率可得m,n,再根据频率之和为1求出t即可;

2)由题意从这批零件中随机选取1件,长度在的概率,且服从二项分布,即可求解;、

3)根据题意,验证零件数据对于是否成立即可求解.

1)由题意可知120件样本零件中长度大于1.60分米的共有18件,

则这批零件的长度大于1.60分米的频率为

为零件的长度,则

.

2)由(1)可知从这批零件中随机选取1件,长度在的概率.

且随机变量服从二项分布

故随机变量的分布列为

0

1

2

3

0.027

0.189

0.441

0.343

(或.

3)由题意可知

因为

所以这批零件的长度满足近似于正态分布的概率分布.

应认为这批零件是合格的,将顺利被该公司签收.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆,四点中恰有三个点在椭圆C上,左、右焦点分别为F1F2

1)求椭圆C的方程;

2)过左焦点F1且不平行坐标轴的直线l交椭圆于PQ两点,若PQ的中点为NO为原点,直线ON交直线x=﹣3于点M,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知O为原点,抛物线的准线与y轴的交点为HP为抛物线C上横坐标为4的点,已知点P到准线的距离为5.

1)求C的方程;

2)过C的焦点F作直线l与抛物线C交于AB两点,若以AH为直径的圆过B,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面ABCD为直角梯形,AB//CD是以为斜边的等腰直角三角形,且平面平面ABCD,点F满足,.

1)试探究为何值时,CE//平面BDF,并给予证明;

2)在(1)的条件下,求直线AB与平面BDF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左焦点,点在椭圆.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)经过圆上一动点作椭圆的两条切线,切点分别记为,直线分别与圆相交于异于点两点.

i)当直线的斜率都存在时,记直线的斜率分别为.求证:

ii)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】发展“会员”、提供优惠,成为不少实体店在网购冲击下吸引客流的重要方式.某连锁店为了吸引会员,在2019年春节期间推出一系列优惠促销活动.抽奖返现便是针对“白金卡会员”、“金卡会员”、“银卡会员”、“基本会员”不同级别的会员享受不同的优惠的一项活动:“白金卡会员”、“金卡会员”、“银卡会员”、“基本会员”分别有4次、3次、2次、1次抽奖机会.抽奖机如图:抽奖者第一次按下抽奖键,在正四面体的顶点出现一个小球,再次按下抽奖键,小球以相等的可能移向邻近的顶点之一,再次按下抽奖键,小球又以相等的可能移向邻近的顶点之一……每一个顶点上均有一个发光器,小球在某点时,该点等可能发红光或蓝光,若出现红光则获得2个单位现金,若出现蓝光则获得3个单位现金.

1)求“银卡会员”获得奖金的分布列;

2表示第次按下抽奖键,小球出现在点处的概率.

的值;

写出关系式,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在新中国成立70周年国庆阅兵庆典中,众多群众在脸上贴着一颗红心,以此表达对祖国的热爱之情,在数学中,有多种方程都可以表示心型曲线,其中有著名的笛卡尔心型曲线,如图,在直角坐标系中,以原点O为极点,x轴正半轴为极轴建立极坐标系.图中的曲线就是笛卡尔心型曲线,其极坐标方程为),M为该曲线上的任意一点.

1)当时,求M点的极坐标;

2)将射线OM绕原点O逆时针旋转与该曲线相交于点N,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为菱形,且.

(1)证明:平面平面

(2)有一动点在底面的四条边上移动,求三棱锥的体积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】唐朝的狩猎景象浮雕银杯如图1所示.其浮雕临摹了国画、漆绘和墓室壁画,体现了古人的智慧与工艺.它的盛酒部分可以近似地看作是半球与圆柱的组合体(假设内壁表面光滑,忽略杯壁厚度),如图2所示.已知球的半径为R,酒杯内壁表面积为,设酒杯上部分(圆柱)的体积为,下部分(半球)的体积为,则

A.2B.C.1D.

查看答案和解析>>

同步练习册答案