精英家教网 > 高中数学 > 题目详情

已知函数时都取得极值.

(1)求的值及函数的单调区间w.w.w.k.s.5.u.c.o.m     

(2)若对,不等式恒成立,求的取值范围.

(Ⅰ)a=,b=-2,函数f(x)的递增区间是(-¥,-)与(1,+¥).递减区间是(-,1)

(Ⅱ)c<-1或c>2.


解析:

(1)f(x)=x3+ax2+bx+c,f¢(x)=3x2+2ax+b

由f¢()=,f¢(1)=3+2a+b=0得a=,b=-2

f¢(x)=3x2-x-2=(3x+2)(x-1),函数f(x)的单调区间如下表:

x

(-¥,-

(-,1)

1

(1,+¥)

f¢(x)

0

0

f(x)

­

极大值

¯

极小值

­

所以函数f(x)的递增区间是(-¥,-)与(1,+¥).递减区间是(-,1)

(2)f(x)=x3x2-2x+c,xÎ〔-1,2〕,当x=-时,f(x)=+c

为极大值,而f(2)=2+c,则f(2)=2+c为最大值.

要使f(x)<c2(xÎ〔-1,2〕)恒成立,只需c2>f(2)=2+c 解得c<-1或c>2.

练习册系列答案
相关习题

科目:高中数学 来源:2010-2011学年广东省梅州市高三上学期10月月考理科数学卷 题型:解答题

(满分14分)已知函数时都取得极值

(1)求的值与函数的单调区间

(2)若对,不等式恒成立,求的取值范围。

 

查看答案和解析>>

科目:高中数学 来源:2013届海南省高二第一学期期末考试文科数学 题型:解答题

(本题12分)已知函数时都取得极值

(1)求的值 (2)若对,不等式恒成立,求的取值范围 

 

查看答案和解析>>

科目:高中数学 来源:2013届浙江省永嘉县普高联合体高二第二学期第一次月考文科数学试卷 题型:解答题

已知函数时都取得极值。

(1)求的值及函数的单调区间;

(2)若对恒成立,求的取值范围。

 

查看答案和解析>>

科目:高中数学 来源:2010年河北省高二12月月考数学卷doc 题型:解答题

(文)(本小题满分12分)

已知函数时都取得极值

(1)求的值与函数的单调区间

(2)若对,不等式恒成立,求的取值范围。

 

查看答案和解析>>

科目:高中数学 来源:2012届河北冀州中学高二年级下学期第三次月考题(文) 题型:解答题

已知函数时都取得极值.

(1)求的值及函数的单调区间;

(2)若对,不等式恒成立,求的取值范围.

 

查看答案和解析>>

同步练习册答案