精英家教网 > 高中数学 > 题目详情
已知D是△ABC的边BC上(不包括B、C点)的一动点,且满足
AD
=m
AB
+n
AC
,则
1
m
+
2
n
的最小值为(  )
A、3
B、3+2
2
C、4
D、4+2
2
考点:基本不等式
专题:不等式的解法及应用
分析:利用向量共线定理、基本不等式的性质即可得出.
解答: 解:∵B,C,D三点共线,满足
AD
=m
AB
+n
AC

∴m+n=1,m,n>0.
1
m
+
2
n
=(m+n)(
1
m
+
2
n
)
=3=
n
m
+
2m
n
≥3+2
n
m
2m
n
=3+2
2
,当且仅当n=
2
m=2-
2

1
m
+
2
n
的最小值为3+2
2

故选:B.
点评:本题考查了向量共线定理、基本不等式的性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知单位向量
a
b
的夹角为60°,则|
a
+
b
|的值为(  )
A、3
B、2
C、
3
D、
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知af(x)+f(-x)=bx,求f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

某地预计明年从年初开始的前x个月内,某种商品的需求总量f(x)(万件)与月份x的近似关系为f(x)=
1
150
x(x+1)(35-2x)(x∈N,且x≤12).
(1)写出明年第x个月的需求量g(x)(万件)与月份x的函数关系式;
(2)求哪个月份的需求量最大?最大值为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

若等比数列{an}中,a3=12,a4=8
(Ⅰ)求首项a1和公比q;
(Ⅱ)求数列{an}的前8项和S8

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,小圆圈表示网络的结点,结点之间的连线表示它们有网相联.连线标注的数字表示该段网线单位时间内可以通过的最大信息量,现从结点B向结点A传递信息,信息可以分开沿不同的路线同时传递,则单位时间内传递的最大信息量为(  )
A、26B、24C、20D、19

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示的算法流程图中(注:“x=x+2”也可写成“x:=x+2”,均表示赋值语句),若输入的x值为-3,则输出的y值是(  )
A、
1
8
B、
1
2
C、2
D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)=a-
2
ex+1
(a∈R).
(1)确定f(x)的单调区间;
(2)求实数a,使f(x)是奇函数,在此基础上,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|0≤x≤2},B={y|1<y<3},则A∩B=(  )
A、[1,2)
B、[0,3)
C、(1,2]
D、[0,3]

查看答案和解析>>

同步练习册答案